
Adaptive Shape Control for Aerodynamic Design

George R.Anderson ∗

Stanford University, CA

Michael J.Aftosmis †

NASA Ames Research Center, Moffett Field, CA

We present an approach to aerodynamic optimization in which the shape parameter-
ization is progessively and automatically refined. The process consists of an alternating
sequence of optimizing within the current search space, and then refining the parameter-
ization to enable the discovery of superior designs. We show that this approach reduces
computational cost by optimizing in search spaces of appropriate dimensionality. By au-
tomating time-consuming aspects of shape control refinement, it also reduces human cost
and dependence on designer expertise. In addition to uniform shape control refinement,
we also discuss adaptive refinement, where the goal is to selectively add only the shape
control with the most potential to improve the aerodynamic performance. Potential design
improvement is estimated by comparing local objective and constraint gradients, which
are computed at low cost by reusing existing adjoint solutions. A priority queue of the
most effective candidate shape parameters is then maintained using an efficient construc-
tive search procedure. We first demonstrate adaptive shape control on an multipoint airfoil
drag miminization problem with many constraints, where our system achieves equivalent
design improvement to a fine, fixed parameterization, but in one-third of the wall-clock
time. We also establish a 3D shape-matching benchmark, in which our system automati-
cally discovers the shape parameters necessary to match a target shape. This approach is
an important step towards greater automation in solving the unfamiliar aerodynamic shape
design problems of the future.

Nomenclature

C, C Shape control
C, C Constraint functional(s)
D(X) Deformation function
g,g Growth rate(s) in number of parameters
I Importance indicator
J Objective functional
N(·) Number of (·)
O Asymptotic order
P (C) Function that generates deformation modes
Q Flow variables
r Slope reduction factor for trigger
S Continuous surface
S Discrete tesselated surface

w Window width
X,X Design variable value(s)
ψ Adjoint solution

Subscripts

(·)c Candidate shape control
(·)G Gradient
(·)H Hessian
(·)× Static shape control

Abbreviations

DV Design variable
KKT Karush-Kuhn-Tucker

I. Introduction

Automated flow meshing and simulation tools play a central role in aerodynamic shape optimization.
In this work, we examine the degree to which the shape parameterization might also be automatically

and adaptively refined during optimization. The primary goals of this approach are to reduce manual setup
time and to achieve faster and more robust design improvement, especially for problems where many design
variables are required.

∗Ph.D. Candidate, Dept. of Aeronautics and Astronautics. george.anderson@stanford.edu. Member AIAA.
†Aerospace Engineer, Applied Modeling and Simulation Branch, MS 258-5. michael.aftosmis@nasa.gov. Assoc. Fellow AIAA.

1 of 24

American Institute of Aeronautics and Astronautics



24 DV

14 DV

30 DV

102

101

100 10020 40 60 80

Objective
Niter ⇠ O (NDV ) (1)

T = WserialNrounds +
Wparallel

Nthreads
Nrounds (2)

T = Nrounds

✓
Wserial

Wparallel
+

1

Nthreads

◆
(3)

Nthreads =

�
Ncores

pgc

⌫
(4)

Nrounds =

⇠
NDV

pgc

⇡
(5)

pgc 
�

memtotal

memDV

⌫
(6)

pgc  Ncores (7)

@J
@vi

= 2 (v � v⇤)i (8)

J (S, Q) (9)

J (S) (10)

S (X) (11)

@J
@X

=
@J
@S

@S

@X
(12)

J = CD (13)

J = CD + 10

✓
1� CL

C⇤
L

◆2

+ 10

✓
1� CM

C⇤
M

◆2

(14)

J = CD + 0.1

✓
1� CL

C⇤
L

◆2

(15)

J = w1Ncasualties + w2rcrater (16)

@C

@T

@T

@D
(17)

@C

@T

@T

@D
(18)

@C

@T

@T

@D
(19)

JP = w1

nX

i

✓
@J

@Xi
� 1

n

◆2

+ w2

nX

i

✓
@L

@Xi

◆2

(20)

1 of 4

American Institute of Aeronautics and Astronautics

Cost

Figure 1: BFGS-style optimization converges in O(NDV )
search directions. A progressive parameterization can fol-
low the “inside track”, making rapid gains early, while still
approaching the continuous optimal shape.

Under a traditional static parameterization ap-
proach, the space of all reachable shapes is prescribed
before each optimization begins. This can restrict
the design space in unnecessary ways, needlessly hin-
dering the discovery of superior designs outside this
envelope. One recourse is to use a very large number
of design variables. However, as shown in Figure 1,
while finer parameterizations can reach superior de-
signs, they take longer to converge, even with BFGS
gradient-based optimizers, which typically converge
inO (NDV ) design iterations. The designer strives to
find an optimal balance in the number of design vari-
ables: using too many leads to inefficient navigation,
while using too few restricts adequate exploration
of the design space. In practice, a designer will typ-
ically perform an optimization and then manually
refine the parameterization if necessary — a time-
consuming task. In this work, we develop a progres-
sive parameterization approach, where we start in a
coarse search space, and then automatically transi-
tion to finer parameterizations at strategic moments.
This constitutes a single optimization process that
encourages rapid design improvement early on, while
driving the shape towards the local optimum of the
continuous problem.

22 24 26 28 30
2.4

2.6

2.8

3

3.2

3.4

3.6

Axis

Twist
Scale

Sweep

22 24 26 28 30
2.4

2.6

2.8

3

3.2

3.4

3.6

22 24 26 28 30
2.4

2.6

2.8

3

3.2

3.4

3.6

22 24 26 28 30
2.4

2.6

2.8

3

3.2

3.4

3.6

Figure 2: Search space refinement for wing design. Airfoil
control is refined independently on each section.

Figure 2 illustrates our basic “progressive param-
eterization” approach. The designer specifies an ini-
tial low-dimensional shape parameterization. As the
design evolves, higher-resolution shape control is au-
tomatically added, removing the restrictions of op-
timizing within a “static” (fixed) parameterization.
Rapid design improvement is encouraged by using
compact search spaces early on; more degrees of free-
dom are introduced only when necessary to further
improve the design. In the limit of uniform shape
control refinement, the full design space gradually
becomes available for exploration.

This system essentially automates a practical ap-
proach to design. The designer does not need to
predict the necessary shape parameters before de-
sign begins. Rather, the important shape parame-
ters emerge as a natural consequence of optimization,
and are clearly visible to the designer in the pattern
of shape parameters. Large-scale changes are made
early on, while detailed adjustments happen last, if
resources permit.

II. Background

Progressive shape parameterization for aerodynamic optimization was first proposed in 1993 both by Beux
and Dervieux1 and by Kohli and Carey.2 A series of subsequent papers, primarily from researchers at INRIA,
demonstrated that substantial design acceleration can be achieved with nested parameterizations.3–9 Their
approach is well-documented in a detailed report by Duvigneau,10 which in large part motivated this work.
Making an analogy to grid sequencing and multi-grid techniques in PDE solutions, they find that a sequence
of refined design spaces performs substantially better than a fine, fixed parameterization.8,11 Some authors

2 of 24

American Institute of Aeronautics and Astronautics



argue that optimization is an inherently “anti-smoothing” process,12 and that design space sequencing is
analogous to a preconditioner for the entire optimization process.5,11 Their results generally suggest that
redistribution of existing design variables is at least as effective as enriching the parameterization.10 However,
their adaptation criterion is based on a geometrical regularization operator, which is insensitive to the specific
design problem.

Another early effort is that of Olhofer et al.,13 who performed genetic optimization in adaptively refined
design spaces. Because they used a gradient-free approach, they evolve several candidate parameterizations
in parallel for several iterations before selecting the most promising one. Hwang and Martins developed a
conceptually reversed approach that starts from an initial fine parameterization, and then uses coarsened
search spaces to accelerate design improvement, analogous to grid sequencing in PDE solvers.14 Their major
achievement is an exact transfer of the Hessian information when switching between search spaces, avoiding
the initial Hessian build-up time. The disadvantage of this approach is that the sequence of search spaces
must be provided a priori. Other work has also demonstrated design acceleration using manually-refined
parameterizations.15,16

The most functionally similar approach to ours is that of Han and Zingg,17,18 who most notably intro-
duced an adaptation criterion that is sensitive to the specific design problem, by using objective gradient
information. In this work we further develop this approach, introducing a more detailed adaptation criterion
that incorporates Hessian information and constraint gradients, and we present a search procedure for finding
an effective ensemble of shape parameters. We also discuss an efficient triggering mechanism to determine
when to transition to a new search space. Our approach focuses on discrete geometry modelers, which offer
unique advantages for adaptive parameterization.

III. Optimization with Progressive Shape Control

The aerodynamic shape optimization problem we consider consists of finding a shape S that minimizes
an objective J , subject to design constraints Cj :

min
S
J (S,Q(S)) (1)

s.t. a ≤ Cj(S,Q(S)) ≤ b (2)

where J and Cj are scalar functionals that involve performance metrics such as lift, drag, range, stability
margins, maneuver loads, wing volume or operating costs. They may also relate to more specialized concerns
such as reducing sonic boom ground signatures or environmental impact. In the case of aerodynamic
functionals, J and Cj are evaluated after solving for the flow variables Q.

A. Shape Parameterization

The surface S is continuous, and so the design space is infinitely dimensional. To reduce the search space to
a manageable dimension, the surface modifications are parameterized.a A shape parameterization technique,
P , is a map from a vector C describing the shape control to a search space, consisting of a deformation
function, D, and a set of shape parameters X. This deformation function takes the shape parameter values
and generates a new surface S:

(Parameterize) P : C −→ D (3)

(Deform) D : X −→ S (4)

In other words, P describes how the shape control induces a set of shape parameters, while D describes
how those shape parameters deform the surface. In standard optimization approaches, only Equation 4 is
automated. In this work we also automate Equation 3. The shape parameters X, or a subset thereof, serve
as the design variables for optimization. The “search space” defined by D and X is a subset of the full design
space. The local linearization of D provides the shape derivatives ∂S

∂X , which describe the deformation modes
of each parameter, and which are used in gradient-based optimization. To help elucidate this somewhat terse
terminology, we give a brief example.

aIn this work we work exclusively with parameterized modifications of an existing surface. However, the discussion is
completely accurate for constructive parameterized surface generation as well.

3 of 24

American Institute of Aeronautics and Astronautics



!15

22 24 26 28 30
2.4

2.6

2.8

3

3.2

3.4

3.6

Span control stations

Ci

Xi
chordXi

twist

Xi
sweep

Figure 3: Wing planform parameterization

Example: Wing Planform Design

Consider the simple wing parameterization scheme illus-
trated in Figure 3. Twist, sweep and chord are interpolated
between the spanwise stations. Here, the shape control C
is the vector of spanwise coordinates of the control stations
(blue lines), indicating where twist, sweep or chord can be
manipulated. Pwing interprets this compact, high-level
description, expanding it into precise, detailed definitions
of each deformation mode. This collection of deformation
modes is encoded by the deformation function D, which
takes the twist, sweep and chord values X and generates
a new surface. To refine the shape control, new stations
are added, introducing new deformation modes.

The distinction we have drawn between the shape control C and the shape parameters X is important.
Each optimization level involves a search in the space spanned by X, while holding C fixed. When we
transition to the next search space, we are modifying the shape control C, while holding the shape fixed.
There is not generally a one-to-one correspondence between the two. In the example above, each shape
control element Ci induces three parameters (twist, thickness, sweep). Furthermore, each deformation mode
is influenced not only by Ci, but also by the neighboring shape controllers, Ci+1 and Ci−1, which also
contribute to the interpolation.

B. Progressive Parameterization

In standard shape optimization approaches, the shape control C× is static and pre-determined by the
designer. This induces a static search space D×(X×), which may be more or less effective at improving the
objective function. In our approach, we instead use a sequence of shape control resolutions C0,C1,C2 . . . ,
which induces a sequence of search spaces D0(X0), D1(X1), D2(X2) . . . that permit ever more detailed shape
control. The designer provides only the initial shape control C0. After an optimization in this design space,
the shape control is automatically refined, and optimization continues in the more detailed search space.b

Auto: Partition
Feature/Constraint

Parameter

Auto: Parameterize
Binary 

Refinement

User: Mark Features and Constraints

Auto: Uniform Refinement

A B C

D E F

Auto: Adaptive Refinement

Figure 4: Progressive parameterization with discrete, hierarchi-
cal shape control refinement

The purpose of this approach is to auto-
mate the generation of nested search spaces of
increasing resolution. However, the designer is
still responsible for establishing a basic frame-
work for this process. Specifically, the designer
selects a class of shape control (e.g. twist vs.
airfoil deformation), specifies an initial coarse
parameterization, and indicates how the shape
control may be refined. Automatic refinement
is performed within this user-defined frame-
work.

In this work we use nested, hierarchical
shape control, which implies a discrete ap-
proach to adding design variables. (In other
words, we do not consider optimal continuous
positioning of the shape controllers.) Figure 4
illustrates nested search space refinement as ap-
plied to airfoil design. Instead of providing a
static set of design variables, the designer estab-
lishes a general shape control framework. This
may involve establishing important design fea-
tures as parameters or constraints, such as the

bAlthough we do not consider it in this work, removing design parameters that are no longer useful is also a possibility.

4 of 24

American Institute of Aeronautics and Astronautics



leading and trailing edges or spar locations (black and orange dots in Figure 4). These features partition
the curve into several regions. In each region we initially place a single shape controller (blue dots). Finer
shape control is then gradually introduced as necessary through binary refinement. Conceptually, this allows
the shape control to be viewed as a set of binary trees, with deeper levels corresponding to higher resolution
shape control. This immediately raises the possibility of “adaptive” refinement, where we selectively refine
only certain regions, as shown at the bottom of Figure 4. The goal of adaptive refinement is to add only the
most important shape control to solve the given problem.

IV. Implementation

The design loop now consists of an alternating sequence: optimize within the current search space, and
then refine the shape control. This process is outlined in Algorithm A. The function Optimize(·) represents
a standard parametric shape optimization framework, which for reference is outlined in the Appendix.
Parameterize(·) is the modeler-dependent implementation of Equation 3, which generates a search space
(i.e. a deformation function and design variables) from the shape control description. It also manages the
transfer of design variable bounds and scale factors from the previous design space, and if possible, ensures
that the new shape is identical to the final previous shape. Unlike in static optimization approaches, where
this is a manual pre-processing step, here it is automated.

Algorithm A: Optimization with Adaptive Shape Control

Input: Initial surface S0 and shape control C0, objective
J , constraints Cj , shape control growth rate g

Result: Optimized surface S

C←− C0,S←− S0

repeat
D,X0 ←− Parameterize(S,C)
S←− Optimize(D,X0,J , Cj) until Trigger(·)
Cc ←− GetCandidateShapeControl(C)
if adaptive then

C←− AdaptShapeControl(C,Cc, ψ,S,g)
else

C←− C ∪Cc // Uniform refinement

end

until convergence of J and Cj w.r.t. C

Function colors:

Parametric geometry modeler

Refinement strategy (modeler independent)

The refinement strategy is governed by
three new functions, each of which will be
discussed in more detail in the following
sections. First, the Trigger(·) monitors
the optimization to determine when to re-
fine the shape control. Next, the modeler-
dependent GetCandidateShapeControl(·)
generates a list of possible locations where
the shape control may be refined. Fi-
nally, some or all of these candidates are
marked for refinement. The simplest ap-
proach is to add all the candidates to
the active set, which we will call “uni-
form” refinement. Alternatively, the sys-
tem can try to predict which subset of the
candidates would best enrich the search
space. This adaptive process is represented
by AdaptShapeControl(·), a search proce-
dure that chooses an effective subset of the
candidates. The ultimate convergence cri-
terion is based on objective convergence as
the discrete shape control C approaches
continuous shape control (direct optimization of S or S).

Algorithm A integrates three basic software components: (1) a geometry modeler, (2) a shape optimization
framework, and (3) scripts to guide search space refinement. Conceptually, these components can be viewed
as standalone tools, although in practice there is a substantial degree of communication among them. The
shape optimization framework and geometry modeler are treated as independent servers and are invoked
during the outer loop over the sequence of search spaces.

A. Shape Optimization Framework

For the function Optimize(·) in Algorithm A, we use a gradient-based aerodynamic shape design framework19

that uses an embedded-boundary Cartesian mesh method for inviscid flow solutions. Objective and constraint
gradients are computed using an adjoint formulation. We leverage these same adjoint solutions to prioritize
candidate design variables when refining the search space. Optimization can be handled with any black-box
gradient-based optimizer; for this study, the SQP optimizer SNOPT20 is used, enabling proper treatment of
linear and nonlinear constraints.

5 of 24

American Institute of Aeronautics and Astronautics



B. Parametric Geometry Generation

Throughout this work we optimize shapes by deforming discrete surface triangulations. Shape manipulation
is handled with a standalone modeler for discrete geometry, implemented as an extension to an open-source
computer graphics suite called Blender.21 This extension allows Blender to serve as a geometry engine for
optimization. For this work we developed custom shape parameterization plugins, which are described with
the corresponding examples in Section VI. Shape sensitivities are computed analytically for each deformer.
Geometric functionals (e.g. thickness and volume) are computed by a standalone tool that provides analytic
derivatives to the functionals. The design framework communicates with these geometry tools via XDDM,
an XML-based protocol for design markup.19

When using discrete geometry, the shape is preserved exactly when transferring between shape search
spaces, which is a useful feature for our approach (and required for adaptive refinement). By contrast, con-
structive modelers require a re-fitting procedure when re-parameterizing. With a few notable exceptions,6,18

this refitting is usually approximate, introducing a “jump” in the shape and typically a setback in the design
process. With discrete geometry, exact shape preservation means that no time is lost during these transfers.

We view each parameterization as a binary tree, restricting refinement to the midpoints between existing
shape controllersc, although we can also search several levels deep from the current parameterization. Addi-
tionally, we prohibit large discrepancies between the refinement depth of adjacent regions on the surface. This
is maintains smoothness in the spacing between parameters, which was found to be important for robustness
in certain cases. Many parameterization techniques support infinitely-scalable shape control resolution, but
we usually impose a minimum spacing between adjacent parameters (equivalent to a maximum depth in
the binary tree). This prevents the shape control from becoming unreasonably closely spaced and keeps the
shape control resolution well outside the resolution of the surface and flow mesh discretizations.

C. Triggering Search Space Refinement

0 20 40 60 80 100 120

Search direction

0.00

0.01

0.02

0.03

0.04

0.05

O
b

je
ct

iv
e

Slope-trigger

Full convergence

Figure 5: Orange: Optimizing to convergence on each level
leads to slow design improvement. Blue: Using aggressive
slope-based transitions permits much faster design improve-
ment. ×-marks denote parameterization refinements.

The Trigger(·) function in Algorithm A is a
stopping-condition that terminates the optimization
on the current set of design variables and initiates
a parameter refinement. The trigger is critical for
efficiency, as demonstrated in Figure 5. The two
branches show the performance impact of triggering
at different times, for an airfoil drag minimization
problem. Over-optimizing on the initial parameter-
ization leads to sluggish design improvement. Re-
fining the search space earlier results in much faster
improvement per cost. Similar observations have
also been made by other authors in the context of
both adaptive parameterization10 and optimization
with progressively refined PDE meshes.22 We ruled
out simplistic triggers, such as setting the maximum
number of search directions proportional to the num-
ber of design variables. This would demand prior
knowledge of the rate of convergence for a problem,
which defeats the purpose of having a general and
automated system.

1. Optimality Trigger

One obvious and robust approach is to allow the op-
timization to converge until an optimality criterion
based on the KKT conditions is sufficiently satisfied.
Han and Zingg18 used this approach to achieve max-
imal design improvement within each search space.
However, we found that on many problems, this type

cRefinement can also be directionally biased, for example to cluster parameters towards the leading edge of a wing.

6 of 24

American Institute of Aeronautics and Astronautics



of trigger often excessively delays refinement in early search spaces, as demonstrated in Figure 5. This might
be remedied by choosing a looser optimality tolerance. However, the magnitudes of the gradients can vary
widely, depending on the scaling of the problem. Establishing efficient an cutoff is difficult without prior
experience with a particular problem, which we would like to avoid for an automated approach.

2. Slope Trigger

We propose a simple alternative approach: to trigger when the rate of design improvement starts to sub-
stantially diminish. To detect this, we monitor the slope of the objective convergence with respect to a
suitable measure of computational cost. We terminate the optimization when this slope falls below some
fraction r of the maximum slope that has occurred so far. We found this strategy to be less sensitive to the
cutoff parameter r than the optimality criterion. The normalization by the maximum slope accounts for the
widely differing scales that occur in different objective functions. For example, a drag functional is normally
O
(
10−2

)
while a functional based on operating range may be O

(
105
)
.

The slope is evaluated at major search iterations, which is monotonically decreasing.d The objective slopes
can be non-smooth, which can cause false triggering. To alleviate this, we use running averages over a small
window, which effectively smooths the objective history. This helps prevent premature triggering, but it
causes a lag equal to the size of the window, which delays the trigger for a few search directions. Therefore
the window should be as small as possible. For relatively simple design problems, a fairly aggressive trigger
can be used (as high as r = 0.25, with window w = 1). For more complex problems, especially ones with
initially-violated constraints, we observe that it can be more effective to allow deeper convergence on the
coarser parameterizations before proceeding.

The slope-trigger tacitly assumes that diminishing design improvement indicates a nearly fully-exploited
search space. This assumption is not always correct: the optimizer could be simply navigating a highly
nonlinear or poorly-scaled region of the design space, after which faster design improvement would continue.
Thus an aggressive trigger may introduce shape parameters earlier than strictly necessary. However, under an
adjoint formulation, the cost of computing additional objective and constraint gradients is usually negligible
compared to the cost of over-converging in a coarse search space.e For practical design environments we also
optionally allow the designer to manually signal the framework to trigger (or delay triggering) a parameter
refinement. If a signal is not sent, the automatic trigger is used.

V. Adaptive Shape Control Refinement

At this point, we have described a system that optimizes a shape, using automatically-generated, uniformly-
refined, nested search spaces. Uniform refinement is simple, robust, and consistent with the continuous
optimal solution. However, uniform shape control distribution may be suboptimal for a given number of
shape parameters, which can adversely impact efficiency. Even under an adjoint formulation, where the
cost of gradient computations are much less sensitive to the number of design variables NDV than under a
finite difference approach, minimizing the number of design variables is still generally highly desirable. Non-
negligible O(NDV ) costs remain, namely the computation of geometric surface derivatives and subsequent
gradient projections.

To investigate the possibility of selective adaptation, we now develop a systematic method for choosing an
effective combination of refinement locations from among the myriad candidates. To do so, we first generate a
set of candidate shape control refinements. Then we predict the effectiveness of each candidate by computing
an “importance indicator”, which is based on problem-aware metrics, such as the objective and constraint
gradients. We then select the candidate shape control refinement with the highest predicted performance.

A. Effectiveness Indicator

The expected achievable design improvement ∆Jexp with a given set of shape control can be estimated
using the local objective and constraint gradients with respect to the candidate shape control and a Hessian
approximation. Consider Figure 6, which illustrates a local quadratic fit of an objective function in the
candidate search space, based on the current objective value J (X0) (presumably the optimum achieved in

dFor attainable inverse design problems, the slope should be measured in log-space to better reflect the problem.
eHowever, under a finite-difference optimization framework (i.e. without the adjoint), where the cost of each extra gradient

is two flow solutions (N + 1 in all), it could prove more efficient to allow deeper convergence on fewer design variables.

7 of 24

American Institute of Aeronautics and Astronautics



the previous design space), objective gradients ∂J
∂Xc

, and Hessian ∂2J
∂X2

c
. Each gradient gives a local forecast

of the rate at which that individual candidate parameter will help improve the design, while the second
derivatives indicate how fast that rate of return will decrease.

!11

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.

7 of 17

American Institute of Aeronautics and Astronautics

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.

7 of 17

American Institute of Aeronautics and Astronautics

J (Xc)

Niter ⇠ O (NDV ) (1)

T = WserialNrounds +
Wparallel

Nthreads
Nrounds (2)

T = Nrounds

✓
Wserial

Wparallel
+

1

Nthreads

◆
(3)

Nthreads =

�
Ncores

pgc

⌫
(4)

Nrounds =

⇠
NDV

pgc

⇡
(5)

pgc 
�

memtotal

memDV

⌫
(6)

pgc  Ncores (7)

@J
@vi

= 2 (v � v⇤)i (8)

J (S, Q) (9)

J (S) (10)

S (X) (11)

@J
@X

=
@J
@S

@S

@X
(12)

J = CD (13)

J = CD + 10

✓
1� CL

C⇤
L

◆2

+ 10

✓
1� CM

C⇤
M

◆2

(14)

J = CD + 0.1

✓
1� CL

C⇤
L

◆2

(15)

J = w1Ncasualties + w2rcrater (16)

@C

@T

@T

@D
(17)

@C

@T

@T

@D
(18)

@C

@T

@T

@D
(19)

JP = w1

nX

i

✓
@J

@Xi
� 1

n

◆2

+ w2

nX

i

✓
@L

@Xi

◆2

(20)

1 of 4

American Institute of Aeronautics and Astronautics

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.

7 of 17

American Institute of Aeronautics and Astronautics

J (X0)

Niter ⇠ O (NDV ) (1)

T = WserialNrounds +
Wparallel

Nthreads
Nrounds (2)

T = Nrounds

✓
Wserial

Wparallel
+

1

Nthreads

◆
(3)

Nthreads =

�
Ncores

pgc

⌫
(4)

Nrounds =

⇠
NDV

pgc

⇡
(5)

pgc 
�

memtotal

memDV

⌫
(6)

pgc  Ncores (7)

@J
@vi

= 2 (v � v⇤)i (8)

J (S, Q) (9)

J (S) (10)

S (X) (11)

@J
@X

=
@J
@S

@S

@X
(12)

J = CD (13)

J = CD + 10

✓
1� CL

C⇤
L

◆2

+ 10

✓
1� CM

C⇤
M

◆2

(14)

J = CD + 0.1

✓
1� CL

C⇤
L

◆2

(15)

J = w1Ncasualties + w2rcrater (16)

@C

@T

@T

@D
(17)

@C

@T

@T

@D
(18)

@C

@T

@T

@D
(19)

JP = w1

nX

i

✓
@J

@Xi
� 1

n

◆2

+ w2

nX

i

✓
@L

@Xi

◆2

(20)

1 of 4

American Institute of Aeronautics and Astronautics

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.

7 of 17

American Institute of Aeronautics and Astronautics

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.

7 of 17

American Institute of Aeronautics and Astronautics

J (Xc)

Niter ⇠ O (NDV ) (1)

T = WserialNrounds +
Wparallel

Nthreads
Nrounds (2)

T = Nrounds

✓
Wserial

Wparallel
+

1

Nthreads

◆
(3)

Nthreads =

�
Ncores

pgc

⌫
(4)

Nrounds =

⇠
NDV

pgc

⇡
(5)

pgc 
�

memtotal

memDV

⌫
(6)

pgc  Ncores (7)

@J
@vi

= 2 (v � v⇤)i (8)

J (S, Q) (9)

J (S) (10)

S (X) (11)

@J
@X

=
@J
@S

@S

@X
(12)

J = CD (13)

J = CD + 10

✓
1� CL

C⇤
L

◆2

+ 10

✓
1� CM

C⇤
M

◆2

(14)

J = CD + 0.1

✓
1� CL

C⇤
L

◆2

(15)

J = w1Ncasualties + w2rcrater (16)

@C

@T

@T

@D
(17)

@C

@T

@T

@D
(18)

@C

@T

@T

@D
(19)

JP = w1

nX

i

✓
@J

@Xi
� 1

n

◆2

+ w2

nX

i

✓
@L

@Xi

◆2

(20)

1 of 4

American Institute of Aeronautics and Astronautics

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.

7 of 17

American Institute of Aeronautics and Astronautics

J (X0)

Niter ⇠ O (NDV ) (1)

T = WserialNrounds +
Wparallel

Nthreads
Nrounds (2)

T = Nrounds

✓
Wserial

Wparallel
+

1

Nthreads

◆
(3)

Nthreads =

�
Ncores

pgc

⌫
(4)

Nrounds =

⇠
NDV

pgc

⇡
(5)

pgc 
�

memtotal

memDV

⌫
(6)

pgc  Ncores (7)

@J
@vi

= 2 (v � v⇤)i (8)

J (S, Q) (9)

J (S) (10)

S (X) (11)

@J
@X

=
@J
@S

@S

@X
(12)

J = CD (13)

J = CD + 10

✓
1� CL

C⇤
L

◆2

+ 10

✓
1� CM

C⇤
M

◆2

(14)

J = CD + 0.1

✓
1� CL

C⇤
L

◆2

(15)

J = w1Ncasualties + w2rcrater (16)

@C

@T

@T

@D
(17)

@C

@T

@T

@D
(18)

@C

@T

@T

@D
(19)

JP = w1

nX

i

✓
@J

@Xi
� 1

n

◆2

+ w2

nX

i

✓
@L

@Xi

◆2

(20)

1 of 4

American Institute of Aeronautics and Astronautics

J (Xprev)

Figure 6: Local first- and second-order fits (dotted
lines) of a candidate search space’s actual behavior
(blue). With second-derivative information, the ex-
pected improvement ∆Jexp can be estimated. A sec-
ond candidate search space with higher gradients (red)
may actually offer less potential design improvement
if its second derivatives are also high.

The minimizer of this fit has an analytically known
location and value. Conceptually, this minimal value is
an estimate of how much design improvement is possible
under that parameterization, which serves as an intuitive
importance indicator. Considering first the unconstrained
case, the indicator is

IH(Cc) ≡ −∆Jexp(Cc) =
1

2

∂J
∂Xc

T (∂2J
∂X2

c

)−1
∂J
∂Xc

(5)

which prioritizes search spaces with the highest capacity
for design improvement.

In the next secton, we will show that IH performs ex-
ceptionally well, even on a highly misscaled problem. Un-
fortunately, for aerodynamic problems, no estimate of the
Hessian for the candidate design space is readily available,
without the prohibitive cost of 2NDV finite-differenced
flow and adjoint solutions.f In a well-scaled problem, we
might approximate the Hessian as the identity matrix,
yielding an indicator that is more readily computable, as
it involves only gradient information:

IG(Cc) =
1

2

∂J
∂Xc

T ∂J
∂Xc

=
1

2

NDV∑

i=1

(
∂J
∂Xi

c

)2

(6) Function 2: GradientIndicator(·)
Input: Surface S, shape control C,

objective adjoint solution ψ
Result: Indicator IG

D,X←− Parameterize(S,C)
foreach Xi

c in Xc do
∂S
∂Xi

c
←− ShapeDerivative(D,Xi

c)
∂J
∂Xi

c
←− ProjectGradient(ψ, ∂S

∂Xi
c
)

end

IG ←−
∑

i(
∂J
∂Xi

c
)2

For many aerodynamic problems, however, the relative
design variable scales are orders of magnitude different
from each other. As we will show in the next section,
this can render IG a grossly ineffective predictor of perfor-
mance. To rectify this, a simple diagonal scaling matrix
D can also be used:

ID(Cc) =
1

2

∂J
∂Xc

T

D−1
∂J
∂Xc

(7)

Ideally, D is the diagonal of the Hessian. Roughly speak-
ing, the diagonal of the Hessian encodes the relative scal-
ing of each parameter, while the off-diagonal terms account for redundant potential among the parameters.
Although even this diagonal is often impractical to compute, the Hessian approximation from the previous
design space (built up by a quasi-Newton optimizer), might be transferred to the candidate design space,
although this requires information about the similarity or spatial organization of shape parameters. We leave
this possibility for future work. Although the diagonal values could theoretically be specified as scale factors
by the user, as commonly done in optimization to improve the conditioning, we rule that out here for two
reasons. Most importantly, it effectively de-automates the process. Additionally, unlike in quasi-Newton op-
timization, which self-corrects the Hessian over several iterations, here we are trying to pick good parameters
without actually taking an optimziation step. An inaccurate choice of scale factors will therefore have a more
serious impact on the quality of the results.

The objective gradients have modest additional cost. For example, Function 2 shows how IG might be
assembled. During optimization, the adjoint solution ψ is used to efficiently compute gradients with respect
to arbitrary shape design variables. Now, after a search space refinement is triggered, we reuse the adjoint
solution from the final design in the previous search space to rapidly compute gradients with respect to the

fThe BFGS method builds up a Hessian approximation in the previous search space, but it is not obvious how or if one can
extrapolate this information to the candidate design variables.

8 of 24

American Institute of Aeronautics and Astronautics



new candidate design variables. Reuse of the adjoint is possible only if the geometry modeler exactly preserves
the shape when changing search spaces, so that the final shape in the previous search space is identical to the
initial shape for the next search space. This is inherently true for all discrete geometry modelers, because they
operate by deforming a static baseline shape, but is not generally true for constructive (CAD-like) modelers.

1. Indicator Validation

!6

0 5 10 15 20 25 30 35 40 45
Search direction

100

101

102

103

104

105

O
b
je

ct
iv

e

P1

P2

P3

21 candidates

44 candidates

�Jactual

Figure 7: Indicator validation: P1: Objective convergence
under initial parameterization. P2 and P3: Subsequent
optimizations corresponding to addition of one of the can-
didates, starting from the previous best design.

We briefly compare the performance of these three
indicators on a geometric shape-matching problem.
(The detailed setup for this problem is given in Sec-
tion §VI.B.) We start with a baseline 3-DV shape
parameterization, under which the shape has been
optimized to convergence, as shown by the blue curve
in Figure 7. All design improvement possible under
the initial parameterization has been attained, but
further improvement is possible when more degrees
of freedom are added. The goal of this example is
to evaluate the ability of the indicators (Equations
5, 6 and 7) to predict the actual performance of the
various candidate shape parameters.

For this evaluation, we generate 21 candidate
shape control refinements from the baseline param-
eterization. For each candidate, we run a separate
optimization, where we add only that one shape pa-
rameter to the active set. (In practice, we would
add several parameters at once; adding one at a time
simplifies this validation study.) Figure 7 shows the
objective convergence corresponding to each candi-
date parameter. Our goal in adaptive refinement is
to pick the parameters that enable the objective to
converge to the lowest final value, thus maximizing
∆Jactual. Next, for each candidate we predict the
potential design improvement using Equations 5, 6
and 7, which we then correlate with the actual design improvements. We repeated this study once more, by
invoking a second refinement and evaluating 44 more candidate shape parameters.

Figure 8 shows the correlation between the predicted design improvement and the actual observed design
improvement for each of the candidates. The left side corresponds to the 21 candidates tested in the first
refinement, while the right side is for the subsequent 44 candidates considered in the second refinement. In
each plot, the parameters at the top right are the most effective ones. Our automated system would choose
to add only the N rightmost parameters, while ignoring the ineffective parameters at the left. Exactly how
many parameters to add will depend on the refinement strategy. The top frames in Figure 8, corresponding
to a full Hessian approximation (Equation 5), demonstrate nearly perfect performance predictions for every
candidate. The middle frames show that if the Hessian is assumed to be the identity matrix (Equation 6), the
correlation is extremely poor, especially during the second refinement, where the highest-ranked parameters
in fact perform the worst, and vice versa. As we discuss in Section §VI.B, this happens because of poor
scaling among the design parameters, which the Hessian naturally accounts for.

Previous studies have suggested using adjoint-derived gradient information to determine the relative
importance of different candidate parameters.14,18 This study demonstrates that unless the problem is well-
scaled, examining only first-order information can lead to very poor predictions. As a possible remedy,
consider the bottom frames, where only the diagonal of the Hessian is used. In this case the correlation is
quite reasonable. Although the diagonal of the Hessian is not readily available for aerodynamic problems, this
nevertheless shows that some form of simple diagonal scaling may be sufficient to achieve good predictions
of importance for adaptive shape control refinement.

9 of 24

American Institute of Aeronautics and Astronautics



!7

0 30 60 90 120 150
�Jpredicted

0

30

60

90

120

150

�
J a

ct
u
a
l

Full Hessian

Ideal (�Jactual = �Jpredicted)

0.0 0.2 0.4 0.6 0.8 1.0
�Jpredicted ⇥107

0

30

60

90

120

150

�
J a

ct
u
a
l

No Hessian

Best fit

0 20 40 60 80 100
�Jpredicted

0

40

80

120

160

�
J a

ct
u
a
l

Diagonal of Hessian

Best fit

0 8 16 24 32 40
�Jpredicted

0

8

16

24

32

40

�
J a

ct
u
a
l

0 6000 12000 18000 24000 30000
�Jpredicted

0

10

20

30

40

�
J a

ct
u
a
l

0 6 12 18 24 30
�Jpredicted

0

8

16

24

32

40

�
J a

ct
u
a
l

Figure 8: Indicator validation: Correlation between predicted and actual design improvement for the first (left) and
second (right) refinements. Top row : Full Hessian approximation. Middle row : Assuming the Hessian is the identity
matrix. Bottom row : Using only the diagonal of the Hessian.

2. Constraint-Sensitive Indicator

If there are design constraints or design variable bounds, it is desirable to prioritize parameterizations that
have the largest expected feasible objective reduction. A candidate shape parameter is not useful if it must
violate a constraint to improve the objective. In the specialized case of localized constraints (for example,
wing thickness), a rough approach is to simply exclude any candidate shape control stations that are located
near the active constraints.18 However, this does not extend to important non-localized constraints, such as
lift, pitching moment or wing volume.

To handle general linear and nonlinear constraints, including design variable bounds, we propose an
approach based on the Karush-Kuhn-Tucker (KKT) optimality conditions. Satisfaction of the KKT conditions
indicates that no further progress is possible within the current search space. Inverting this logic, we propose
to add new parameters that make the KKT conditions in the new search space as un-satisfied as possible.

As before, we assume a local quadratic fit to the objective function, but now subject to the currently
active constraints, which are treated as equality constraints and linearized about the current design:

∂CT

∂Xc
Xc = b (8)

Equation 8 makes the assumption that the active constraint set at the current design is the same as the active
set at the predicted minimizer, which may be inaccurate, but is an unavoidable consequence of linearizing
the constraint functionals. As before, the constraint gradients with respect to the candidate design variables
can be readily computed by reusing the existing constraint adjoint solution(s), following a process similar to
Function 2. The constrained minimizer of the quadratic fit is the solution to the following system of equations




∂2J
∂X2

c

∂C
∂Xc

∂CT
∂Xc

0




X∗c

λ


 =




∂J
∂Xc

b


 (9)

10 of 24

American Institute of Aeronautics and Astronautics



where the leftmost term is sometimes called a KKT matrix. Solution of this system can be split into two
steps. First, solve for the Lagrange multipliers λ:

(
∂CT

∂Xc

(
∂2J
∂X2

c

)−1
∂C
∂Xc

)
λ =

∂CT

∂Xc

(
∂2J
∂X2

c

)−1
∂J
∂Xc

− b (10)

We do not need to directly compute the minimizer X∗c . Instead, we substitute its functional form into the
quadratic fit, which yields the expected feasible design improvement

IKKT (Cc) ≡ −∆Jexp(Cc) =
1

2

(
∂J
∂Xc

− λ
∂C
∂Xc︸ ︷︷ ︸

A

)T (
∂2J
∂X2

c

)−1(
∂J
∂Xc

− λ
∂C
∂Xc

)
(11)

Roughly speaking, IKKT prioritizes parameterizations where the objective gradients are as orthogonal as
possible to a linear combination of the active constraint gradients. Any available curvature information from
the Hessian (middle term) corrects the prediction. Term A in Equation 11 is related to the KKT optimality
metric. At the optimal design in the previous search space, Term A is zero (or nearly zero if only partially
converged), but after adding new parameters it will become nonzero, indicating that there is room for further
feasible reduction in the objective.

In the absence of active constraints, Equation 11 is equivalent to Equation 5. In our experiments, the
two indicators typically result in very similar rankings, but in some cases, Equation 11 may avoid adding
ineffectual parameters. As before, if we treat the Hessian as the identity matrix, the indicator simplifies to a
first-order prediction

IKKTG
(Cc) =

1

2

NDV∑

i=1


 ∂J
∂Xi

c

−
NC∑

j=1

λj
∂Cj
∂Xi

c




2

(12)

which in turn is equivalent to Equation 6 when there are no active constraints.

B. Searching for the Best Combination of Candidates

We now present a search procedure for finding an effective parameterization. Recall from Equation 5 that
the expected design improvement is a function of the whole ensemble of candidate parameters Cc, not simply
of each individual parameter Cc. This is a critical point, and has important consequences for efficiency.
In general, the expected design improvement is a nonlinear function of the candidates. In other words, to
compute the effectiveness of a collection of candidates, we cannot simply sum the incremental benefits due
to each candidate parameter. The reason for this is that multiple similar shape control candidates usually
have “redundant potential”: adding one of them may be useful, but adding a second may not help much

!6

Existing Parameter

Candidate Parameter

Indicator

A

E

B C
D

F

A

2. Update 
window 

and resort

Add best

1. Build priority 
queue

ABCEFD

Figure 9: Constructive search algorithm for refining the shape parameterization.

11 of 24

American Institute of Aeronautics and Astronautics



if it enacts similar shape modifications. Put another way, the potential design improvement offered by two
candidates may be mutually exclusive.

Finding the best ensemble of parameters is a form of combinatorial optimization. An exhaustive search is
prohibitive: choosing the best subset of A out of B candidates would require A!

B!(A−B)! indicator evaluations.

One simple “search” procedure is to randomly sample combinations of parameters. However, this is highly
unlikely to find a good combination of parameters without very large numbers of samples. Although we did
not consider it, “metaheuristic” search procedures such as genetic optimization, could be used. However,
these typically require large numbers of functional evaluations.

Function 3: AdaptShapeControl(·)
Input: Surface S, current shape control C,

candidate shape control Cc, adjoint
solutions ψi, growth rate g, window w

Result: Updated shape control C

// Phase 1. Build priority queue

queue←− ∅
foreach Cc in Cc do

I ←− ComputeIndicator(S,C ∪ Cc, ψi)
queue.Add(Cc, priority = I)

end
// Phase 2. Add shape control

Nadd ←− int(len(C) · g[i])
for i=1..Nadd do

foreach Cc in queue.Best(w) do
I ←− ComputeIndicator(S,C ∪ Cc, ψi)
queue.Update(Cc, priority = I)

end
Cbest ←− queue.pop()
C←− C ∪ Cbest

end

For this work we developed a “constructive”
search procedure, illustrated in Figure 9. In the first
phase, each possible introduction of a single new pa-
rameter is analyzed. A priority queue is then formed
by ranking the candidates by their indicator value,
as computed by any of the methods from Section
§V.A. In the second phase, we make Nadd passes
over the priority queue, reanalyzing only a sliding
window, w, of the top few candidates remaining in
the queue, resorting the queue, and adding the top-
ranked parameter. The choice of the window size
w is a tradeoff between the cost of evaluating more
combinations and the potential benefit of finding a
more effective search space. This procedure is given
more explicitly in Function 3. Its important features
are:

• By reanalyzing the top w candidates, we avoid
adding redundant parameters.

• The cost for the entire search is bounded and
O(Nc).

g

This procedure is most effective when the ini-
tial priority queue remains a fairly accurate ranking
throughout the search. We observe that for many
problems this is a reasonable assumption, and the
procedure often returns the same result as an exhaustive search, but at a fraction of the cost. If the initial
priority queue is considered perfectly trustworthy, one can use a window size of w = 0, which is equivalent
to immediately accepting the top Nadd members of the queue. However, in cases with high “redundancy”
among the candidate shape parameters, this procedure can yield far less optimal results. We give a detailed
example of these different situations in Section §VI.B.

The wall-clock time of the search procedure depends on the number of candidates being considered, the
window size, and on the speed of the geometry modeler and gradient projection tools, which are invoked
frequently. In our environment, we observe highly practical running times, with cost usually equivalent to
no more than a few design iterations. Naturally, there is a tradeoff between spending longer searching for a
more efficient parameterization and immediately making design progress, but in a less optimal search space.

For certain special types of deformers (notably, Hicks-Henne bump functions23 and Bernstein polynomials
or Kulfan parameters24) each deformation mode, described by ∂S

∂X , is a function of only one element of the
shape control C. In these special cases, the objective and constraint gradients can be precomputed, which
greatly reduces the expense of ranking the parameters. Unfortunately, such deformers are the exception rather
than the rule. In general, the deformation mode shape of a parameter also depends on where its neighbors
are located. To visualize why this is usually the case, consider interpolating deformation between consecutive
control stations. By moving one station relative to its neighbor, both of their shape deformation modes
are changed; the width of one shrinks, while the other expands. The presence of any form of interpolation
renders this simplification invalid, ruling out almost all modelers, including spline-based approaches, CAD
systems, and custom deformers like the ones used in this work.

gAt most Nc(1 + w
2

) indicator evaluations are required: Nc to build the initial priority queue and min(Nadd, Nc −Nadd) to
add the rest, because if we are adding more than half of the candidates, we can work backwards, removing one at a time.

12 of 24

American Institute of Aeronautics and Astronautics



C. Pacing

Cost (equivalent number of flow solves)

G
eo

m
et

ric
 O

bj
ec

tiv
e 

(N
or

m
al

iz
ed

) 100

10-1

50 150 2001000

10-2

10-3

10-4

10-5

Growth Rate
1.25x
1.5x
1.75x
2x

Figure 10: Performance of different growth rates on a
geometric shape-matching objective. Each curve shows
mean behavior over 10 randomized trials (trigger r = 0.25).

Setting the growth rate of the number of parameters
(g in Algorithm A) involves striking a balance be-
tween flexibility and efficiency. An inflexible search
space with too few design variables will quickly stag-
nate, requiring frequent shape control adaptation.
Conversely, with too many design variables, naviga-
tion is slow.

For this work, we specify relative growth rates
(e.g. “increase the number of design variables by
50%”). Figure 10 compares the performance of var-
ious growth factors from 1.25 − 2× on a geometric
shape-matching problem. On this problem, a growth
rate of 2× converges twice as fast as a growth rate
of 1.25×. The optimal pace will depend on the prob-
lem. Here, the relative simplicity of the geometric
objective functional allows rapid and reliable design
improvement regardless of the number of design vari-
ables, thus favoring fast growth rates. In more com-
plex problems, we observe that slower growth rates are superior.

Other growth-setting strategies might also eventually prove useful, such as performing a cost-benefit
estimation (especially with the Hessian-based indicator), or even removing some design variables from the
active set for efficiency. An additional consideration is how many shape parameters to start with. As the
first example will demonstrate, starting with a truly minimal search space (e.g. one or two variables) leads
to stunted growth early on. We observe that it is often more effective to start with several design variables
(at least 6-10), again dependent on the problem.

VI. Results

In a concurrently published applications paper,25 we demonstrate our progressive (uniformly-refined)
parameterization approach on four benchmark shape optimization problems. The benchmark problems are
posed by the AIAA Aerodynamic Design Optimization Discussion Group and include two airfoil design
problems, twist optimization for minimum induced drag, and a transonic wing design case. In that paper,
we also discuss the importance of controlling discretization error in achieving robust design improvement.

In this section, we demonstrate specifically adaptive shape control on two additional cases. The first
example examines transonic airfoil design with two design points and many constraints, where optimization
convergence is difficult. The second example establishes a benchmark geometric shape-matching problem
that exercises our indicator and search procedure.

A. Transonic Airfoil Design

In this example we consider multipoint transonic airfoil design. The purpose is to demonstrate our approach
on a challenging 2D problem. We show that progressive shape control leads to a smoother design trajectory
and accelerates the optimization.

1. Problem Statement

�0.05

0.00

0.05

S
ca

le
d

T
o

sc
al

e

0.00 0.25 0.50 0.75 1.00

x/c

�1.8

�1.2

�0.6

0.0

0.6

C
p

RAE 2822

3 1
4

5 2
6 Binary 

Refinement

Figure 11: Baseline geometry for transonic airfoil design,
showing first three levels of uniformly refined shape control
(2-DV, 6-DV and 14-DV)

The baseline geometry is a unit-chord RAE 2822
airfoil, shown in Figure 11. The objective is to min-
imize an equally-weighted sum of drag at two flight
conditions, Mach 0.79 and 0.82. Lift-matching and
minimum pitching moment constraints are imposed
at both design points. Because we are using an in-
viscid solver, we constrain the camber line angle γ
at the trailing edge (see Figure 12) to prevent exces-

13 of 24

American Institute of Aeronautics and Astronautics



sive cambering that would result in poor viscous performance. We also specify a minimum and maximum
geometric closing angle φ at the trailing edge. Finally we require that the thickness be preserved at least
90% of its initial value everywhere (enforced at 20 chordwise locations ti), and that the total cross-sectional
area A maintain its initial value ARAE . The complete optimization statement is

!12

� �

Figure 12: Geometric con-
straints at the trailing edge

minimize J = CD1
+ CD2

s.t. CL1
= CL2

= 0.75

CM1
≥ −0.18 (V)

CM2
≥ −0.25 (V)

9◦ ≤ φ ≤ 13◦

γ ≤ 6◦ (V)

A ≥ ARAE ≈ 0.07787

ti ≥ 0.9tRAEi
∀i

where (V) denotes constraints that are initially violated. Gradients for the six aerodynamic functionals are
computed using adjoint solutions. The 23 geometric constraints are computed on the discrete surface, with
gradients derived analytically. The angle of attack at each design point is variable.

2. Shape Parameterization

The airfoil is parameterized using a direct manipulation technique. As shown in Figure 4, we explicitly specify
the deformation of a set of “pilot points” along the curve, which serve as the design variables. Deformation
of the remainder of the curve is interpolated using radial basis functions.9,26–28 We choose the cubic basis
function φ = r3, primarily because it requires no local tuning parameters, making it more amenable to
automation. Shape control refinement is binary, with adjacency and midpoints defined in terms of arclength
along the curve. In the language of Section III.A, the shape control C is the parametric locations of the
pilot points along the airfoil curve. Function PRBF “binds” these locations to the surface, resulting in a
deformation function D, which takes the control point deflections X and generates a new surface.

We consider several static shape parameterizations (with 6, 14, 30 and 62 shape design variables) and
compare their performance to two progressive shape control strategies starting from 2-DVs: (1) nested
uniform refinement and (2) adaptive refinement. We set a maximum tree depth equivalent to the 62-DV
parameterization, so that the two progressive approaches can, if necessary, ultimately recover the 62-DV
search space, while preventing the shape control from becoming unreasonably closely spaced.

3. Adaptive Strategy

The trigger for the progressive and adaptive approaches was based on slope reduction, with a reduction factor
of r = 0.01. We used a large window of w = 6 for the first 3 levels, while the constraints are being driven to
satisfaction. In the presence of violated constraints, SNOPT’s merit function undergoes large fluctuations,
which can cause early slope-based triggering. Subsequently, we reduced the window to w = 2 for efficiency.
For the adaptive approach, we used a target growth rateh of 1.75× and used the constructive search algorithm
(Function 3), with w = 3. As there are many constraints in this problem, we used the first-order KKT-based
indicator IKKTG

(Equation 12) to rank candidate refinements. Hessian information would be useful here, but
we do not currently have an affordable way to compute aerodynamic functional Hessians for each candidate
refinement.

4. Optimization Results

Figure 13 shows the airfoil shape achieved by three of the stages during the adaptive approach (4-DV, 15-DV,
26-DV). Examining the Mach 0.79 pressure profile, the loading is shifted forward. The reflex camber at the
trailing edge is made more shallow to satisfy the camberline angle constraint. The main shock is moved
forward and weakened. A small shock temporarily appears on the lower surface while meeting the constraints,
but is then eliminated by the final design. Overall the drag at this design point is reduced from over 300

hActual growth rates are also affected by regularity rules.

14 of 24

American Institute of Aeronautics and Astronautics



�0.08

�0.04

0.00

0.04

0.08

S
ca

le
d

T
o

sc
al

e

0.00 0.25 0.50 0.75 1.00

x/c

�1.8

�1.2

�0.6

0.0

0.6

C
p

Baseline

P1: 4DV

P3: 15DV

P4: 26DV

Figure 13: Transonic airfoil optimization results for the adaptive parameterization approach. Top: Optimized airfoil
to scale. Middle: Final airfoil from three intermediate search spaces (4-DV, 15-DV, 26-DV), showing 26-DV adapted
parameterization. Bottom: Corresponding pressure profiles for the Mach 0.79 design point.

counts to 66 counts. Similarly, at Mach 0.82, the drag is reduced from about 600 counts to 276 counts. Figure
13 also shows the non-uniformly refined final parameterization, which is the result of adding design variables
over five levels. The sequence of the first few adapted parameterizations is shown in Figure 14.

!11

Figure 14: Transonic airfoil : History of adaptive refinement,
showing best airfoils attained under the first several parameteri-
zations.

Figure 15 shows the evolution of the lift,
drag and pitching moment functionals. The
constraints are rapidly met and held through-
out the optimization, while the drag is grad-
ually reduced. The thickness constraints are
satisfied at every design. The area and trail-
ing edge constraints are all active but satis-
fied by the end. At each re-parameterization,
the quasi-Newton optimizer performs a “cold
restart”, which resets the Hessian approxima-
tion to the identity matrix. The main conse-
quence is that the lift constraints are violated
for the first few search directions immediately
after refining, before snapping back to the tar-
get values. The design is still slowly improving.
The fact that substantial gains were made even
on the final parameterization indicates that we
have not yet reached the continuous limit of
design improvement.

15 of 24

American Institute of Aeronautics and Astronautics



!13

0.000

0.008

0.016

0.024

0.032

0.040
DP1.CDDP1.CDDP1.CDDP1.CDDP1.CDDP1.CDDP1.CDDP1.CD

0.0048

0.55

0.60

0.65

0.70

0.75

0.80
DP1.CLDP1.CLDP1.CLDP1.CLDP1.CLDP1.CLDP1.CLDP1.CL

0.7522

0 40 80 120 160 200 240 280 320 360

Design iteration

�0.24

�0.21

�0.18

�0.15

�0.12

�0.09
DP1.CMDP1.CMDP1.CMDP1.CMDP1.CMDP1.CMDP1.CMDP1.CM

-0.1361

0.0045

0.0060

0.0075

0.0090

DP1.CDDP1.CD

0.0048

nov22: P6: 56DV

P7: 62DV

Min

Target

0.55

0.60

0.65

0.70

0.75

0.80
DP1.CLDP1.CL

0.7522

0 20 40 60 80 100 120 140

Design iteration

�0.18

�0.16

�0.14

�0.12

�0.10

�0.08
DP1.CMDP1.CM

-0.1361
(a) Mach 0.79 design point

0.024

0.032

0.040

0.048

0.056

0.064
DP2.CDDP2.CDDP2.CDDP2.CDDP2.CDDP2.CDDP2.CDDP2.CD

0.0265

0.70

0.72

0.74

0.76

DP2.CLDP2.CLDP2.CLDP2.CLDP2.CLDP2.CLDP2.CLDP2.CL

0.7507

0 40 80 120 160 200 240 280 320

Design iteration

�0.28

�0.24

�0.20

DP2.CMDP2.CMDP2.CMDP2.CMDP2.CMDP2.CMDP2.CMDP2.CM

-0.1961

(b) Mach 0.82 design point

Figure 15: Transonic airfoil : Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

0 20 40 60 80 100 120 140

Search direction

0.03

0.04

0.05

0.06

0.07

0.08

O
b

je
ct

iv
e

Static: 6DV

Static: 14DV

Static: 62DV

Progressive (2-6-14-30-62)

Adaptive (2-4-8-14-26-39-56-62)

(a) Search direction history

0 500 1000 1500 2000 2500 3000 3500 4000

Cost (minutes)

0.03

0.04

0.05

0.06

0.07

0.08

O
b

je
ct

iv
e

Static: 6DV

Static: 14DV

Static: 62DV

Progressive (2-6-14-30-62)

Adaptive (2-4-8-14-26-39-56-62)

(b) Design improvement vs. cost (on 24 Haswell
cores) plotted only at successful search directions

Figure 16: Transonic airfoil : Convergence of combined drag value (CD1 +CD2) (ignoring satisfaction of constraints)
for each parameterization method. ×-marks denote search space refinements.

16 of 24

American Institute of Aeronautics and Astronautics



!19

�0.06

�0.03

0.00

0.03

0.06

0.09

S
ca

le
d

T
o

sc
al

e

0.00 0.25 0.50 0.75 1.00

x/c

�1.8

�1.2

�0.6

0.0

0.6

C
p

design000

design027

�0.06

�0.03

0.00

0.03

S
ca

le
d

T
o

sc
al

e

0.00 0.25 0.50 0.75 1.00

x/c

�1.2

�0.6

0.0

0.6

C
p

design000

design028

�0.06

�0.03

0.00

0.03

S
ca

le
d

T
o

sc
al

e

0.00 0.25 0.50 0.75 1.00

x/c

�1.8

�1.2

�0.6

0.0

0.6

C
p

design000

BEST

Static 14-DV parameterization

�0.09

�0.06

�0.03

0.00

0.03

0.06

S
ca

le
d

T
o

sc
al

e

0.00 0.25 0.50 0.75 1.00

x/c

�1.8

�1.2

�0.6

0.0

0.6

1.2

C
p

design000

BEST

�0.06

�0.03

0.00

0.03

S
ca

le
d

T
o

sc
al

e

0.00 0.25 0.50 0.75 1.00

x/c

�1.8

�1.2

�0.6

0.0

0.6
C

p
design000

BEST

�0.08

�0.04

0.00

0.04

0.08

S
ca

le
d

T
o

sc
al

e

0.00 0.25 0.50 0.75 1.00

x/c

�1.8

�1.2

�0.6

0.0

0.6

C
p

design000

BEST

Progressive parameterization

2DV

6DV

14DV

Figure 17: Transonic airfoil : shapes encountered during optimization under a progressive parameterization (right)
are consistently much smoother than airfoils encountered under a static parameterization (left).

5. Comparison to Static Parameterizations

The left frame of Figure 16 compares the convergence of the drag objective for the various parameterizations.
Initially, there is a somewhat convoluted startup period of 10-20 search directions, where the initially violated
constraints were being driven to satisfaction at the expense of drag. Afterwards, the progressive and
adaptive approaches strongly outperform any of the static parameterizations, achieving more consistent
progress, converging far faster, and ultimately reaching equivalently good or superior designs. This is a
clear confirmation of the predicted behavior, described and illustrated notionally in Figure 1 as following the
“inside track” of the static parameterizations.

Early in design, some of the static design spaces initially outperform the extremely coarse (2-, 4- and 6-DV)
progressive and adaptive search spaces. This indicates that our choice to start with a minimal 2-DV design
space was not ideal. Practically speaking, it is more efficient to start with several variables. Nevertheless, by
the end, the progressive approaches have still solidly outperformed the static parameterizations, which tend
to stall well before reaching their theoretical potential,i most likely because of the relative lack of smoothness
in their design trajectories.

The computational savings are more stark in the right frame of Figure 16, which shows objective im-
provement vs. an estimate of wall-clock timej. The progressive and adaptive approaches reach the same
objective value as the 63-DV parameterization in one-third of the time. Each design iteration included an
adjoint-driven mesh adaptation to control discretization error,22,29 a flow solution for each design point,
and six adjoint solutions on the final adapted mesh to compute gradients for the aerodynamic functionals.
Notably, Figure 16 includes the cost of long line searches, visible especially in the 62-DV parameterization.
It also includes the usually neglected O(NDV ) computational time due to computation of shape derivatives
∂S
∂X by the geometry modeler, followed by gradient projections to compute ∂J

∂X and
∂Cj
∂X . Adaptive refinement

controls these costs by reducing the number of design variables. By adjusting the progressive and adaptive
strategies, even more speedup is certainly possible. For example, the relatively delayed trigger could be
tightened, as it resulted in several extended periods of little design improvement.

As a final note for this problem, Figure 17 shows several representative airfoils encountered during
optimization. We observe that with a progressive or adaptive approach, the entire design trajectory involves
smoother, more reasonable airfoils. This is a desirable characteristic from a robustness standpoint, and also
because it makes it possible to stop at any point during optimization and have a reasonable design.

B. Geometric Shape Matching Benchmark

In this example, we demonstrate the ability of our system to discover the parameters necessary to solve an
optimization problem. We also use this example to evaluate the different indicators developed in Section
§V.A and to assess the performance of our search procedure developed in §V.B.

The problem involves geometric shape-matching on a typical transport wing. In shape matching, we
examine the convergence from a baseline geometry to an attainable target shape. The objective function

iWe performed cold restarts when the static parameterizations stalled, to verify that no further progress could be made.
jRough timings on 24 Intel Haswell cores

17 of 24

American Institute of Aeronautics and Astronautics



aims to minimize the deviation between the current shape and the target shape S∗ in a least-squares sense:

J ≡ ‖S− S∗‖2 =

Nverts∑

i=1

‖vi − v∗i ‖2 (13)

where vi are the current vertex coordinates on the discrete surface and v∗i are the corresponding target vertex
coordinates. This is a problem with a known solution in two senses. We not only know the optimal shape,
but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to efficiently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 18 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper
or sweep, represented as a discrete geometry with about 197,000 vertices. The target geometry is a wing
with the same airfoil section, but substantial twist, chord-length and sweep profiles, as shown in Figure 18.
For this academic example, the target sweep profile is linear and the target chord-length profile is piecewise
linear in two segments, while the twist profile is quadratic.

The wing planform deformation is parameterized using the technique illustrated in Figure 3, which linearly
interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-sections.
The initial parameterization has three design variables: twist, chord and sweep at the tip station (marked
“L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (e.g. “L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at different
stations, allowing for anisotropically refined shape control.

4.4 Baseline

Target
Root Fixed

L0

L1

L2

Chord Profile
2

0.4

1.2

Twist Profile

0

-6.16o

+2.25o

Linear LE Sweep

Baseline

1.7875

Break

2

L2

Target

RAE 2822

Twist 
about LE

-0.1-0.08-0.06-0.04-0.02 0 0.020.040.060.080.10.120.140.160.180.20.220.240.260.280.30.320.340.360.380.40.420.440.460.480.50.520.540.560.580.60.620.640.660.680.70.720.740.760.780.80.820.840.860.880.90.920.940.960.98 1 1.021.041.061.081.1
x

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

y

�(y) = �y2 + 3y

�(y) = �y2 + 3y

Figure 18: Baseline and target planform profiles. Initial shape control station is labeled L0, after which L1 is added,
followed by the L2 stations, etc.

18 of 24

American Institute of Aeronautics and Astronautics



The target shape is unattainable under this initial parameterization. Only through sufficient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and sufficient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
linear chord profile. Next, progessively finer twist control should be added to approximate the quadratic
twist profile with piecewise linear segments. The intial sweep controller at the tip is sufficient to recover the
linear sweep distribution, so no additional sweep control should be added. We now test the degree to which
our system can recover or approximate this “ideal” parameterization.

2. Test 1: Indicator Comparison

Our first goal is to investigate the indicator’s ability to accurately guide the search space construction and
to discover the necessary parameters. In this exercise we sequentially add one new design parameter at a
time, followed by a brief optimization. We compare the predictive power of the two effectiveness indicators,
one based on gradients, IG (Equation 6) and one using full Hessian information, IH (Equation 5), which is
accurately computable for this analytic objective.k

Figure 19 shows the resulting adaptation patterns that evolved. The right frame shows the pattern
produced by the Hessian indicator after 22 adaptation cycles. Sweep control is correctly ignored. Chord
control was correctly added at the break ( 13

32 span). Four extra chord variables were added, but this was
not a mistake. Under the binary refinement rules stipulated in Section §IV.B, the necessary station at 13

32
span was not considered a candidate until the stations at 1

2 , 1
4 , 3

8 , and 7
16 span were all first added. The

adaptation procedure did precisely this, and correctly identified the necessary parameter once the adaptation
was deep enough. Examining the twist profile, the system correctly added evenly spaced stations along the

kThe Hessian is accurate but not exact, because the twist deformation modes are nonlinear with respect to the angle. The
error due to this effect is small, but it explains some slightly imperfect predictions.

�2.5

0.0

2.5

5.0

T
w
is
t

0.0

0.3

0.6

0.9

T
h
ic
kn
es
s

012345

Spanwiselocation(z)

0.0

0.8

1.6

2.4

S
w
ee
p

�2.5

0.0

2.5

5.0

T
w

ist

0.0

0.3

0.6

0.9

T
h
ickn

ess

012345

Spanwiselocation(z)

0.0

0.8

1.6

2.4

S
w

eep

�2.5

0.0

2.5

5.0

T
w

ist
0.0

0.3

0.6

0.9

T
h
ickn

ess

012345

Spanwiselocation(z)

0.0

0.8

1.6

2.4

S
w

eep

�2.5

0.0

2.5

5.0

T
w
ist

0.0

0.3

0.6

0.9

T
h
ickn
ess

0 1 2 3 4 5

Spanwise location (z)

0.0

0.8

1.6

2.4

S
w
eep

�2.5

0.0

2.5

5.0

T
w
is
t

0.0

0.3

0.6

0.9

T
h
ic
kn
es
s

012345

Spanwiselocation(z)

0.0

0.8

1.6

2.4

S
w
ee
p

�2.5

0.0

2.5

5.0

T
w

is
t

0.0

0.3

0.6

0.9

T
h
ic

kn
es

s

0 1 2 3 4 5

Spanwise location (z)

0.0

0.8

1.6

2.4

S
w

ee
p

!22

Recovery of necessary shape control

Ideal

Chosen

Target Profile

IG

Ideal parametersExtra parameters

4

5

18

20

IH

IG

IH
LE Sweep

Chord

Twist

Figure 19: Test 1: Performance of the gradient indicator IG vs. the Hessian indicator IH . Top: IH recovers the
expected parameters with few extras, while IG mostly adds extraneous parameters. Bottom: Refinement patterns and
optimized planform distributions with IG (left) and IH (right).

19 of 24

American Institute of Aeronautics and Astronautics



span, optimally clamping down the error between the quadratic profile and the linear segments. It has also
begun to add the next nested level of control near the root.

Now compare the left half of Figure 19, which shows the results using the gradient-only indicator IG after
25 adaptation cycles. Qualitatively, the shape matching is reasonable, but the refinement pattern reveals that
the procedure was quite inaccurate and failed to efficiently capture the important design variables, resulting
in a somewhat inferior match, especially in the twist profile.

!23

0 30 60 90 120 150 180 210 240 270

Search direction

10�4

10�3

10�2

10�1

100

101

102

103

104

105

O
b
je

ct
iv

e

IG

IHIH
(add 3)

(add 1)

(add 1)Ideal

Figure 20: Shape-matching objective convergence for different indi-
cators and search strategies. Solid blue line shows the “best possible”
convergence, using the a priori known best possible 35-DV parameter-
ization. Each color represents a different adaptively-refined parameter-
ization and ×-marks denote search space refinements.

The reason for the relatively poor per-
formance of IG is that the chord and
sweep objective gradients had much larger
magnitudes than the twist gradients, even
when very close to their optimal values.
Thus chord and sweep were favored, even
though they offered only extremely short-
term potential. This is a concrete exam-
ple of the idea illustrated notionally by
the red and blue curves in Figure 6. IH ,
by constrast, was intrinsically sensitive to
the high second derivative of the objective
with respect to the chord and sweep pa-
rameters, revealing that they in fact had
low long-term potential. While comput-
ing IH for aerodynamic functionals is not
currently feasible, this study highlights
the essential role of second derivative scal-
ing information when predicting relative
performance.

Figure 20 compares the objective con-
vergence under the two indicators (la-
beled “IG (add 1)” and “IH (add 1)”).
The gradient indicator frequently adds pa-
rameters with almost no potential, lead-
ing it to stall for several adaptation cycles.
Nevertheless, it still managed to reduce
the objective by over 6 orders of magni-
tude, indicating quite close recovery of the target shape. The Hessian indicator, however, achieves good
progress at every cycle and reaches a superior design.

Compared to the “ideal” parameterization, shown in Figure 20, performance is still relatively slow. It
took many adaptation cycles to drive towards the target shape, because we deliberately permitted only one
parameter to be added at a time and because we searched only one level deep in the parameter tree. As
mentioned in Section §V.C, much higher growth rates should lead to much faster design improvement.

3. Test 2: Search Procedure Evaluation

As a second test, we try searching deeper for candidates (two levels deep), and specify a faster growth rate
(adding three parameters per refinement). For this test, we no longer exhaustively evaluate all combinations,
as this becomes prohibitive. Instead, we use our constructive search procedure (Function 3) to seek a good,
if not perfect, ensemble of shape parameters, by evaluating a small number of candidates. After several
alternating optimizations and refinements, the process converged to nearly perfect matching, as shown in
Figure 21. Figure 20 shows that the convergence rate for this strategy (labeled “IH (add 3)”) is much faster,
approaching the performance of the ideal parameterization. Although there are now a few more unnecessary
parameters than before, the shape recovery is excellent. To achieve this close of a match using uniform
refinement of the shape control would have required 48 shape parameters. By using adaptive shape control,
despite adding some extraneous parameters, we have accurately matched the shape using only 30 parameters.

20 of 24

American Institute of Aeronautics and Astronautics



4. Test 3: Immediate Discovery

0.0

0.5

1.0

1.5

2.0

2.5

S
w

ee
p

0.0

0.4

0.8

1.2

1.6

2.0

C
h

or
d

0 1 2 3 4 5

Spanwise location (z)

−6

−4

−2

0

2

4

T
w

is
t

Figure 21: Test 2: Final recovered planform distribution (search
depth 2, add 3 parameters at a time, Hessian indicator).

As a final experiment, we try to predict all
of the necessary shape control, based only on
information at the baseline design. In other
words, there will be no intermediate optimiza-
tions. We immediately look five levels deep,
and request the addition of 32 design vari-
ables at once, without any prior optimization.
There are a total of 93 candidates, equivalent
to all the parameters that would be added un-
der uniform refinement. An exhaustive search
would involve evaluating all ∼ 8 ·1024 possible
combinations of the parameters, making an
efficient search procedure mandatory.

Figure 22 shows the initial priority queue
for the 96 candidates, which is formed by ana-
lyzing each candidate shape control element in-
dependently, using the Hessian indicator. The
y-axis gives the expected improvement, rela-
tive to the baseline parameterization, that can
be achieved by adding the corresponding pa-
rameter. The ideal shape control ensemble of
32 parameters is highlighted in green. The
first pass over the candidates correctly identi-
fied the chord station at the break as the most
important shape controller to add. Initially, it
appears that the twist variables are the least
important in the queue. With the addition
of the chord parameter, however, the next 50
elements in the queue all become highly in-
effective. Their initial appraisal was based
on the absence of the added parameter; they
could each have recovered much of the same
design potential that it offered. The twist sta-
tions at the end of the priority queue offer
relatively little potential, but that potential
is independent of the chord control, and thus
they remain useful.

Priority Queue
0

20

40

60

80

100

120

140

160

E
xp

ec
te

d
d
es

ig
n

im
p
ro

ve
m

en
t

I H

!25

Chord at 13/32 span

Twist control!
(in green)

Priority Queue
0

20

40

60

80

100

120

140

160

E
xp

ec
te

d
d
es

ig
n

im
p
ro

ve
m

en
t

I H

Ideal ExtraSweep and chord control

Perfect shape matching185.5

Figure 22: Test 3: The priority queue after Phase I of the
constructive algorithm (search depth of 5, adding 32 parameters
at once, Hessian-based indicator). The 32 parameters that would
best recover the target shape are highlighted in green. After
adding the first parameter in the queue, all of the subsequent gray
parameters (chord and sweep controllers) become redundant.

Our search procedure remains functional
on this problem, but it adds many extrane-
ous variables. Function 3 must work its way
through all of the other chord and sweep vari-
ables, one window w at a time, until finally
discovering the more important twist control.
Studies are underway to determine whether
a modification of the constructive approach
can perform well on this relatively rare type of
problem, or whether alternate strategies, such
as a form of genetic algorithm, or specialized
random search would perform better. From a
practical standpoint, however, the easiest ap-
proach is to limit the depth of the search to
1-2 levels deeper than the current parameteriza-
tion, which eliminates most of the redundancy
and yields excellent performance.

21 of 24

American Institute of Aeronautics and Astronautics



VII. Conclusions

In a progressive shape control approach, the search space is enriched automatically as the optimization
evolves, eliminating a major time-consuming aspect of shape design, and freeing the designer to focus on good
problem specification. Recognizing that different design problems may call for different shape control, and
that for unfamiliar problems this may be difficult to predict, we developed an adaptive approach that aims to
discover the necessary shape control while concurrently optimizing the shape. We showed that with progressive
parameterization, the design trajectory is smoother, leading to more robust design improvement and offering
the ability to stop at any point and have a reasonable design. We also showed that the optimization often
achieves faster design improvement (as much as 3× in some cases) over using all the design variables up front.
Additional important benefits of this approach include:

• Automation: By automating search space refinement, this approach greatly reduces user time, and
also reduces dependence on designer expertise.

• Completeness: The full design space can be explored more thoroughly, as it is not restricted by the
initial parameterization.

• Feedback: The refinement pattern conveys useful information about the design problem.

Our implementation is architected to work with arbitrary geometry modelers. Development is required
to prepare an existing modeler for adaptive use. However, the computational acceleration and the amount
of manual setup time eliminated from each optimization strongly justifies this expenditure. With modest
tailoring, our system could also invoke different aerodynamic or multi-disciplinary design frameworks.

VIII. Future Work

As the designer no longer needs to specify the exact deformation modes by which a surface is permitted to
be modified, care must be taken to explicitly specify (via constraints) how it may not be modified, to prevent
the optimizer from taking advantage of weak spots in the problem formulation. Many of these constraints,
such as non-self-intersection, smoothness, or limits on excessive curvature, can in theory be codified, which
would help regularize the optimization and likely lead to superior results.

The efficiency of our approach is highly dependent on the adaptation strategy, including the trigger, growth
rate, indicator and search algorithm. All told, our implementation added only about 10 new parameters
to tune the adaptation strategy. In the future, we hope to determine the degree to which we can robustly
automate some of these choices. Investigations are also underway to examine whether any Hessian information
(in a new candidate search space) can be approximated for aerodynamic objectives, which is expected to
substantially improve the predictions of our adaptive system. For highly redundant candidate pools, the
search procedure might be accelerated by using information on the orthogonality of the deformation modes,
or perhaps alternate search procedures would be more effective, a question we are actively investigating.
Finally, we also hope to demonstrate and evaluate the technique on more large-scale design problems, such
as wing-body-nacelle integration or low-boom design.

Acknowledgments

The authors are deeply indebted to Marian Nemec for development of and support with the use of the
design optimization framework used in this work. We gratefully acknowledge insightful discussions with
David Rodriguez, Joshua Leffell and Susan Cliff, and with the manuscript reviewers, Tom Pulliam and Marco
Ceze. Support for this work was generously provided by a 2.5-year NASA ARMD Seedling award.

References

1Beux, F. and Dervieux, A., “A Hierarchical approach for shape optimisation,” Research Report RR-1868, INRIA, 1993.
2Kohli, H. S. and Carey, G. F., “Shape optimization using adaptive shape refinement,” International Journal for Numerical

Methods in Engineering, Vol. 36, No. 14, 1993, pp. 2435–2451.
3Desideri, J.-A. and Janka, A., “Hierarchical Parameterization for Multilevel Evolutionary Shape Optimization with

Application to Aerodynamics,” International Congress on Evolutionary Methods for Design, Optimization and Control with
Applications to Industrial Problems, 2003.

22 of 24

American Institute of Aeronautics and Astronautics



4Majd, B. A. E., Duvigneau, R., and Désidéri, J.-A., “Aerodynamic Shape Optimization using a Full and Adaptive
Multilevel Algorithm,” ERCOFTAC Design Optimization: Methods and Application, Gran Canaria, Canaria Island, Spain,
April 2006.

5Courty, F. and Dervieux, A., “Multilevel functional preconditioning for shape optimisation,” International Journal of
Computational Fluid Dynamics, Vol. 20, No. 7, 2013/09/06 2006, pp. 481–490.

6Désidéri, J.-A., Majd, B. A. E., and Janka, A., “Nested and Self-Adaptive Bezier Parameterizations for Shape Optimiza-
tion,” Journal of Computational Physics, Vol. 224, 2007, pp. 117–131.

7Majd, B. A. E., Desideri, J.-A., and Duvigneau, R., “Multilevel Strategies for Parametric Shape Optimization in
Aerodynamics,” REMN , 2008.

8Chaigne, B. and Désidéri, J.-A., “Convergence of a Two-Level Ideal Algorithm for a Parametric Shape Optimization
Model Problem,” Research Report 7068, INRIA, Sophia Antipolis, France, September 2009.

9Yamazaki, W., Mouton, S., and Carrier, G., “Geometry Parameterization and Computational Mesh Deformation by
Physics-Based Direct Manipulation Approaches,” AIAA Journal , Vol. 48, No. 8, August 2010, pp. 1817–1832.

10Duvigneau, R., “Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization,” Tech.
Rep. 5949, INRIA, 2006.

11Martinelli, M. and Beux, F., “Multi-level gradient-based methods and parametrization in aerodynamic shape design,”
European Journal of Computational Mechanics, Vol. 17, No. 1-2, 2008, pp. 169–197.

12Désidéri, J.-A. and Dervieux, A., “Hierarchical Methods for Shape Optimization in Aerodynamics. I: Multilevel
Algorithms for Parametric Shape Optimization,” Introduction to Optimization and Multidisciplinary Design, edited by J. Périaux
and H. Deconinck, 2006-3, Von Karman Institute for Fluid Dynamics, March 2006.

13Olhofer, M., Jin, Y., and Sendhoff, B., “Adaptive Encoding for Aerodynamic Shape Optimization using Evolution
Strategies,” Congress on Evolutionary Computation, Korea, 2001, pp. 576–583.

14Hwang, J. T. and Martins, J. R. R. A., “A Dynamic Parametrization Scheme for Shape Optimization Using Quasi-Newton
Methods,” AIAA Paper 2012-0962 , Nashville, TN, January 2012.

15Wu, H.-Y., Yang, S., Liu, F., and Tsai, H.-M., “Comparison of three geometric representations of airfoils for aerodynamic
optimization,” AIAA Paper 2003-4095 , Orlando, FL, June 2003.

16Sherar, P. A., Thompson, C. P., Xu, B., and Zhong, B., “A Novel Shape Optimization Method using Knot Insertion
Algorithm in B-spline and its Application to Transonic Airfoil Design,” Scientific Research and Essays, Vol. 6, No. 27, November
2011, pp. 5696–5707.

17Han, X. and Zingg, D. W., “An Evolutionary Geometry Parametrization for Aerodynamic Shape Optimization,” AIAA
Paper 2011-3536 , Honolulu, HI, June 2011.

18Han, X. and Zingg, D., “An adaptive geometry parametrization for aerodynamic shape optimization,” Optimization and
Engineering, Vol. 15, No. 1, 2013, pp. 69–91.

19Nemec, M. and Aftosmis, M. J., “Parallel Adjoint Framework for Aerodynamic Shape Optimization of Component-Based
Geometry,” AIAA Paper 2011-1249 , Orlando, FL, January 2011.

20Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,”
SIAM Journal on Optimization, Vol. 12, No. 4, 2002, pp. 979–1006.

21Anderson, G. R., Aftosmis, M. J., and Nemec, M., “Parametric Deformation of Discrete Geometry for Aerodynamic
Shape Design,” AIAA Paper 2012-0965 , Nashville, TN, January 2012.

22Nemec, M. and Aftosmis, M. J., “Output Error Estimates and Mesh Refinement in Aerodynamic Shape Optimization,”
AIAA Paper 2013-0865 , Grapevine, TX, January 2013.

23Hicks, R. M. and Henne, P. A., “Wing Design by Numerical Optimization,” J. Aircraft , Vol. 15, No. 7, July 1978.
24Kulfan, B. M., “Universal Parametric Geometry Representation Method,” J. Aircraft , Vol. 45, No. 1, January 2008,

pp. 142–158.
25Anderson, G. R., Aftosmis, M. J., and Nemec, M., “Aerodynamic Shape Optimization Benchmarks with Error Control

and Automatic Parameterization,” AIAA Paper 2015-1719 , Kissimmee, FL, January 2015.
26Jakobsson, S. and Amoignon, O., “Mesh Deformation using Radial Basis Functions for Gradient-based Aerodynamic

Shape Optimization,” Computers and Fluids, Vol. 36, No. 6, July 2007, pp. 1119–1136.
27Rendall, T. C. S. and Allen, C. B., “Unified Fluid-Structure Interpolation and Mesh Motion using Radial Basis Functions,”

Int. J. Numer. Meth. Eng., Vol. 74, 2008, pp. 1519–1559.
28Morris, A. M., Allen, C. B., and Rendall, T. C. S., “Domain-Element Method for Aerodynamic Shape Optimization

Applied to a Modern Transport Wing,” AIAA Journal , Vol. 47, No. 7, 2009.
29Nemec, M. and Aftosmis, M. J., “Toward Automatic Verification of Goal-Oriented Flow Simulations,” Tech. Rep.

TM-2014-218386, NASA, 2014.

23 of 24

American Institute of Aeronautics and Astronautics



Appendix A. Static Shape Optimization Algorithm

Adjoint-based parametric shape optimization frameworks typically follow the iterative loop outlined
in Function 4. A discrete tesselated surface S is generated by a geometry modeler, based on the shape
parameter values X. The solution domain is then meshed and the PDE is solved (for our purposes, the fluid
flow equations), enabling evaluation of the objective function J . Next, the adjoint equations are solved, which
allows rapid computation of the objective gradients ∂J

∂X to each design variable. Finally a gradient-based
optimizer determines an update to the design variables X, and the loop is continued.

Function 4: Optimize(·)
Parametric Geometry Engine

PDE Solver Functions

Input: Shape deformation function D with initial design
variable values X0, objective function J ,
constraints Cj

Result: Optimized surface S, adjoint solution ψ
X←− X0

repeat
S←− GenerateSurface(D,X)
M←− DiscretizePDE(S)
Q←− SolvePDE(M)
J ←− ComputeObjective(Q,S)
ψ ←− SolveAdjoint(M,Q)
foreach Xi in X do

∂S
∂Xi
←− ShapeDerivative(D,Xi)

∂J
∂Xi
←− ProjectGradient(ψ, ∂S

∂Xi
)

end

X←− NextDesign(X, ∂J∂X ) // Optimizer

until Stop(J , ∂J∂X )
return S, ψ

24 of 24

American Institute of Aeronautics and Astronautics


	Introduction
	Background
	Optimization with Progressive Shape Control
	Shape Parameterization
	Progressive Parameterization

	Implementation
	Shape Optimization Framework
	Parametric Geometry Generation
	Triggering Search Space Refinement
	Optimality Trigger
	Slope Trigger


	Adaptive Shape Control Refinement
	Effectiveness Indicator
	Indicator Validation
	Constraint-Sensitive Indicator

	Searching for the Best Combination of Candidates
	Pacing

	Results
	Transonic Airfoil Design
	Problem Statement
	Shape Parameterization
	Adaptive Strategy
	Optimization Results
	Comparison to Static Parameterizations

	Geometric Shape Matching Benchmark
	Initial Parameterization and Target
	Test 1: Indicator Comparison
	Test 2: Search Procedure Evaluation
	Test 3: Immediate Discovery


	Conclusions
	Future Work

