Cart3D Simulations for the 2nd AIAA Sonic boom Prediction Workshop

George R. Anderson

Science \& Technology Corp.

Michael J. Aftosmis

NASA Ames

Marian Nemec
NASA Ames

Computational Aerosciences Branch NASA ARC - Moffett Field, CA

Motivation

- Commercial supersonic flight banned over the US because of objectionable sonic boom
- Hope to overturn this with demonstrably quiet aircraft (e.g. QueSST/LBFD)
- CFD tools are a major contributor to design efforts
- Sonic Boom Prediction Workshops
- (2008) NASA FAP SBPW
- (2014) AIAA SBPWI
- (20I7) AIAA SBPW2

SONIC BOOM PHYSICS

Sound generated

$$
\mu=\sin ^{-1}\left(\frac{1}{M_{\infty}}\right)
$$

Refraction through

 path of the wave front atmosphere with speed of soundSound heard

Bоom Carpets

Track Width (70+ miles!)

SONIC BOOM Prediction

- Workshop Results
- \quad Nearfield (2/4 cases)
- Propagation
- Full Vehicle-to-Boom

Simulation Path

- Conclusions

ALL REQUIRED AND OPTIONAL CASES FROM BOTH WORKSHOPS

OUTLINE

Nearfield Workshop - Cart3D

- Meshing approach - Mach Alignment + Adaptation
- Boom Carpets - Azimuthal Alignment
- Results for Cases 1 and 4
- Local Error Analysis
- Propagation Workshop
- Full Vehicle-to-Boom Simulation Path
- Conclusions

CFD AND MESHING

Flow Solver - Cart3D vI. 5

- Steady, inviscid flow
- 2nd-order upwind method
- Multigrid acceleration
- Domain decomposition - highly scalable
- For this work: Barth-Jespersen limiter

Automatic Meshing

- Multilevel Cartesian mesh with embedded boundaries
- Handles arbitrarily complex vehicle shapes

Error Estimation and Goal-Oriented Mesh Adaptation

- Discretization error estimates computed via method of adjointweighted residuals
- Mesh automatically refined in locations with most impact on signatures

MESHING

Basic Meshing Approach:

I. Rotate mesh very close to the Mach angle
2. Stretch in the principal propagation direction
3. Adapt mesh to resolve line sensor outputs (method of adjoint-weighted residuals)

$$
\mathcal{J}_{r}=\int_{0}^{L} w(\ell)\left(\frac{p(\ell)-p_{\infty}}{p_{\infty}}\right)^{2} d \ell
$$

AdAPTATION

AXIE - SIGNALS

Flight path

AXIE - SIGNALS

BOOM Carpets

ऊ

Boom Carpets

BOOM Carpets with Monolithic Mesh

Compute entire carpet in a single Cartesian mesh

- Off-track angles are misaligned
- Aspect ratio is constrained

high cell-counts

Decomposing Boom Carpets

Use independent meshes
each rotated to off-track angle

DECOMPOSING BOOM CARPETS

Use independent meshes

each rotated to off-track angle

Splitting permits

- azimuthal alignment, which permits:
- higher stretching
- Simultaneous computation of off-track angles in carpet

CONCEPT 25D POWEREDVARIANT (C25P)

Flight Conditions
Mach 1.6
$\alpha=3.375^{\circ}$

Inlet Conditions
$\frac{p}{p_{\infty}}=3.26$
Plug nozzle

Plenum Conditions

$$
\begin{aligned}
& \frac{p_{t}}{p_{\infty}}=14.54 \\
& \frac{T_{t}}{T_{\infty}}=7.87
\end{aligned}
$$

C25P - SOLUTION

Density

On-track mesh ($\sim 35 \mathrm{M}$ cells)

C25P - SOLUTION

 Pressure Coefficient

On-track mesh ($\sim 35 \mathrm{M}$ cells)

C25p - SIGNATURES

Each off-track angle - 35M cell mesh: 4 hr 30 min on 28 cores Includes flow solution + all meshing, adjoint solutions, error estimation, etc.

Assessing Mesh Convergence

Adjoint: Is the integrated functional converging asymptotically?

- Non-intuitive units on error

$$
\mathcal{J}_{r}=\int_{0}^{L} w(\ell)\left(\frac{p(\ell)-p_{\infty}}{p_{\infty}}\right)^{2} d \ell
$$

- Coarse (3M)
- Medium (9M)
- Fine (26M)

Qualitative: Are signal features converging with mesh refinement?

- Out of context, has no quantitative anchor, however:
- The signatures are the result of a error reducing process.

LOCAL ERROR ANALYSIS

Local Richardson extrapolation

- Incorporates estimate of global rate of convergence
- Reveals significant local variation in error and rate of convergence
- Can be used for any mesh refinement technique (not just adjoint-based)

Details: AIAA Paper 20I 7-3255

LOCAL ERROR ANALYSIS OF WORKSHOP SUBMISSIONS Nass

Figure 10. AXIE signature computed on fine grids plotted with discretization error estimates $(\mathbf{R}=\mathbf{5})$.

a) AA, CA, CC, FA (shown), GA, HA, IA, JA.

Good convergence

 everywhere, tight bounds [8 participants]
LOCAL ERROR ANALYSIS OF WORKSHOP SUBMISSIONS Nass

Figure 10. AXIE signature computed on fine grids plotted with discretization error estimates $(\mathbf{R}=\mathbf{5})$.

(2017) Park and Nemec, "Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop"

OUTLINE

Nearfield Workshop

Propagation Workshop - sBOOM

Numerical approach

Propagation Results

AtMospheric Propagation with sboom

sBOOM

I. Ray-tracing
2. Quasi-I D, augmented Burgers' equation

(20II) Rallabhandi, "Advanced Sonic Boom Prediction
Using the Augmented Burgers Equation"

AtMospheric Propagation with sBOOM

- Discretization error

Finite difference solution of PDE on uniform grid

- Input error

Input ~ 100X coarser than output Oversampling introduces high freq.

- Mesh refinement studies

Numerical sources of error $\boldsymbol{\sim} \mathbf{0}$. IdB (cf. atmospheric variability of $\sim 5 \mathrm{~dB}$) But not clearly asymptotic

Propagation Cases

AXIE

LM-I02I

$$
\text { Lref }=43 \mathrm{~m}(14 \mid \mathrm{ft})
$$

Conditions:

$$
M_{\infty}=1.6
$$

Altitude $=15.8 \mathrm{~km}(\sim 52 \mathrm{~K} \mathrm{ft})$

Profiles:

- ISO Standard Atmosphere
- ISO Std. Atm. with 70\% humidity
- Hot day, coastal Virginia
- Hot dry day, Edwards AFB

Wind tunnel model

Conditions:

$$
M_{\infty}=1.6
$$

$$
\text { Lref }=71 \mathrm{~m}(233 \mathrm{ft})
$$

Profiles:

- ISO Standard Atmosphere
- ISO Std. Atm. with 70\% humidity
- 2 consecutive winter days in Green Bay, WI

BOOM FOOTPRINT

Track Width

AXIE	Cutoff		Track Width
Std. Atm	$\pm 50^{\circ}$	69 km	
Atm \# 3	-53°	50°	85 km
Atm \# 4	-44°	47°	72 km

LM-1021		Cutoff	
Track Width			
Std. Atm	$\pm 50^{\circ}$		71 km
Atm \# 1	$\mathbf{- 7 4}$	57°	87 km
Atm \# 2	-59°	65°	$\mathbf{1 1 1} \mathbf{~ k m}$

LOUDNESS

AXIE

LM-102I

PLdB

O. Atm \#1 O. Std. Atm
O. Atm \#2 O. Std. Atm+70\%RH

93 ?

*(199I) Shepherd \& Sullivan, "A Loudness Calculation Procedure Applied to Shaped Sonic Booms"

OUTLINE

Nearfield Workshop
 Propagation Workshop - sBOOM

Full Vehicle-to-Boom Simulation Path

Propagate nearfield CFD signatures through standard atmosphere

Overall convergence and accuracy

Conclusions

Nearfield + Propagation

Perceived loudness (PLdB)

from $r / L=5$ on fine CFD mesh

Case	$\Phi=0^{\circ}$	$\Phi=10^{\circ}$	$\Phi=20^{\circ}$	$\Phi=30^{\circ}$	$\Phi=40^{\circ}$	$\Phi=50^{\circ}$
AXIE	78.1	-	-	-	-	-
JWB	79.5	76.5	78.2	$\mathbf{8 2 . 2}$	81.6	76.6
C25F	78.1	80.4	80.1	$\mathbf{8 2 . 2}$	80.1	73.3
C25P	80.4	81.3	78.3	$\mathbf{8 1 . 4}$	78.7	73.3

C25P
80.4 PLdB

COMPARISON

(2017) Park and Nemec, "Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop"

COMPARISON

(2017) Park and Nemec, "Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop"

CFD Mesh Convergence of Loudness

Perceived loudness (PLdB)

from $r / L=5$ on fine CFD mesh

Case	$\Phi=0^{\circ}$	$\Phi=10^{\circ}$	$\Phi=20^{\circ}$	$\Phi=30^{\circ}$	$\Phi=40^{\circ}$	$\Phi=50^{\circ}$	
AXIE	$78.1(0.4)$	-		-	-	-	-
JWB	$79.5(0.6)$	$76.5(0.7)$	$78.2(0.4)$	$\mathbf{8 2 . 2}(1.5)$	$81.6(0.1)$	$76.6(0.5)$	
C25F	$78.1(0.8)$	$80.4(0.6)$	$80.1(0.1)$	$\mathbf{8 2 . 2}(0.8)$	$80.1(0.6)$	$73.3(0.0)$	
C25P	$80.4(0.5)$	$81.3(0.5)$	$78.3(0.3)$	$\mathbf{8 1 . 4}(0.6)$	$78.7(0.4)$	$73.3(1.6)$	

$\Delta P L d B$ from coarse to fine CFD mesh

- Typically <1 dB change from coarse to fine CFD mesh (max 1.6 dB)
- Most do not demonstrate asymptotic convergence.
- Summary results indicate similar behavior across many codes

CFD functional $J_{r}=\int_{0}^{L} w(\ell)\left(\frac{p(\ell)-p_{\infty}}{p_{\infty}}\right)^{2} d \ell$
used as a convenient surrogate for loudness

Future Work

- Improving CFD/Propagation Coupling

- Better understanding the CFD meshing requirements
- Using noise sensitivities to guide CFD mesh adaptation (direct adaptation to noise vs. surrogate functionals)
- Better interpolation/transfer of signatures
- Physics
- Wake unsteadiness
- Maneuver, elastic effects, control surfaces
- Propagation - secondary booms, reflections

HIGHLIGHTS

Nearfield with Cart3D

- Improved efficiency by carpet splitting, azimuthal alignment, and stretching
- Method for assessing local signature mesh convergence [scripts available]

Propagation with sBOOM

- Major atmospheric variability: 2-5 dB typical, 10-20 dB in extreme cases.
- With cross-wind, 75° off-track can hit ground, track widths widen by 50\%

Full Boom Simulation Path

- Need to better understand asymptotic convergence of noise

QueSSTIONs?

George R. Anderson

 Science \& Technology Corp. george.anderson@nasa.govMichael J. Aftosmis
NASA Ames
michael.aftosmis@nasa.gov

Marian Nemec
 NASA Ames marian.nemec@nasa.gov

NASA Ames Computational Aerosciences Branch Supported by NASA ARMD CST Project

