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Parametric Shape Optimization
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Motivation
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Motivation

24 DV

30 DV

O
bj

ec
tiv

e

N

iter

⇠ O (N

DV

) (1)

T = W

serial

N

rounds

+

W

parallel

N

threads

N

rounds

(2)

T = N

rounds

✓
W

serial

W

parallel

+

1

N

threads

◆
(3)

N

threads

=

�
N

cores

pgc

⌫
(4)

N

rounds

=

⇠
N

DV

pgc

⇡
(5)

pgc 
�
mem

total

mem

DV

⌫
(6)

pgc  N

cores

(7)

@J
@v

i

= 2 (v � v

⇤
)

i

(8)

J (S, Q) (9)

J (S) (10)

S (X) (11)

@J
@X

=

@J
@S

@S

@X

(12)

J = C

D

(13)

J = C

D

+ 10

✓
1� C

L

C

⇤
L

◆2

+ 10

✓
1� C

M

C

⇤
M

◆2

(14)

J = C

D

+ 0.1

✓
1� C

L

C

⇤
L

◆2

(15)

J = w1Ncasualties

+ w2rcrater (16)

@C

@T

@T

@D

(17)

@C

@T

@T

@D

(18)

@C

@T

@T

@D

(19)

J

P

= w1

nX

i

✓
@J

@X

i

� 1

n

◆2

+ w2

nX

i

✓
@L

@X

i

◆2

(20)

1 of 4

American Institute of Aeronautics and Astronautics

BFGS convergence rate

Cost (Major design iteration)
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Low resolution: !
Faster design improvement

High resolution!
Superior final design

14 DV
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Progressive Parameterization
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Instead of choosing a static 
(fixed) parameterization…

6 DV

14 DV

62 DV

…Progressively refine the shape 
control concurrently with optimization.

etc…

(or) and then

and then(or)

Optional manual 
refinement to continue Automatic refinement
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Optimization Loop
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Modify shape

Analyze

until the objective 
converges with respect to 
the shape parameters.
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Optimization Loop
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Refine shape 
control

until the objective converges 
with respect to the shape 
control refinement.

Modify shape

Analyze
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Motivation
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Introduce new degrees 
of freedom only when 
necessary to improve 
the design.

“Inside track” In the limit of refinement, we 
approach the continuous 
design space.
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Objectives
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• Demonstrate adaptive shape control system: 
‣ Automate shape control refinement.  
‣ Accelerate design improvement. 
‣ Discover the parameters necessary to improve a design. 
‣ Obtain better designs with less sensitivity to designer’s 

decisions about parameterization.
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Outline
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✓ Introduction 
‣ How does refinement work? !

‣ Geometry modelers!
‣ Refinement mechanics 

!

‣ When should refinement happen?!
‣ Pacing  
‣ Example 1 — Transonic airfoil design 

!

‣ Where should the shape control be refined? !
‣ Adaptively choosing the best parameters 
‣ Example 2 — Discovering necessary parameters
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Direct Manipulation

!11

Pilot points 
(design variables)

Remainder of airfoil 
deformation interpolated by 
radial basis functions

(x, y, z)

‣ Vertices 
‣ Faces v1

v2

v3

Discrete 
geometry

Spanwise interpolation 
between control stations
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Refinement Mechanics
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Refinement Mechanics
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Refinement Mechanics

Fuselage 
cross-sections

Wing stations Tail stations

View shape parameterization as binary tree:
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Automatic Refinement

Fuselage 
cross-sections

Automatically generate setup files
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1. Insert new parameter 
2. Interpolate value 
3. Transfer optimization parameters: 

‣ Min and max bounds 
‣ Scale factor
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Outline

!16

✓ Introduction 
✓ How does refinement work? !

‣ Geometry modelers!
‣ Refinement mechanics 

!

‣ When should refinement happen?!
‣ Pacing  
‣ Example 1 — Transonic airfoil design 

!

‣ Where should the shape control be refined? !
‣ Adaptively choosing the best parameters 
‣ Example 2 — Discovering necessary parameters
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Pacing of Shape Control Refinement
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Substantially delays 
design progress.

Refinement of 
shape control
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Trigger: Automatic signal to transition to the next parameterization.

Convergence: !
Sufficient reduction of gradients (or KKT) 
‣ Indicates that nearly all expected 

design improvement for this search 
space has been attained.
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Pacing of Shape Control Refinement
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Transition when slope 
starts to taper off.

Converging each level

Slope Trigger: !
Deceleration of design improvement 
‣ Indicates diminishing returns on 

computational time. 
‣ Avoids over-optimizing in coarse 

search spaces.
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Example 1: Transonic Airfoil Design
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A. Transonic Airfoil Design

In this example we consider multipoint transonic airfoil design. The purpose is to demonstrate our approach
on a challenging 2D problem. We show that progressive shape control both smooths the design trajectory
and accelerates the optimization.

1. Problem Statement

The objective is to minimize an equally-weighted sum of drag at two flight conditions, Mach 0.79 and 0.82.
Lift-matching and minimum pitching moment constraints are imposed at both design points. Because we are
using an inviscid solver, we constrain the camber line angle � at the trailing edge (see Figure 9) to prevent
excessive cambering that would result in poor viscous performance. We also specify a minimum and maximum
geometric closing angle � at the trailing edge. Finally we require that the thickness be preserved at least
90% of its initial value everywhere (enforced at 20 chordwise locations ti), and that the total cross-sectional
area A maintain its initial value ARAE . The complete optimization statement is

!12

� �

Figure 9: Geometric con-
straints at the trailing edge

minimize J = CD1 + CD2

s.t. CL1 = CL2 = 0.75

CM1 � �0.18 (V)

CM2 � �0.25 (V)

9�  �  13�

�  6� (V)

A � ARAE ⇡ 0.07787

ti � 0.9tRAEi8i

where (V) denotes constraints that are initially violated. Gradients for the six aerodynamic functionals are
computed using adjoint solutions. The 23 geometric constraints are computed on the discrete surface, with
gradients derived analytically.

2. Geometry and Parameterization
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Figure 10: Baseline geometry and first three levels of shape
control (2-DV, 6-DV and 14-DV)

The baseline geometry is a unit-chord RAE 2822
airfoil, shown in Figure 10, which is parameterized
using a direct manipulation technique. As shown in
Figure 4, we explicitly specify the deformation of
a set of “pilot points” along the curve, which serve
as the design variables. Deformation of the remain-
der of the curve is interpolated using radial basis
functions.15,23–25 We choose the cubic basis function
� = r3, primarily because it requires no local tuning parameters, making it more amenable to automation.

Shape control refinement is binary, with adjacency and midpoints defined in terms of arclength along the
curve. In the language of Section II.B, the shape control C is the parametric locations of the pilot points
along the airfoil curve. Function PRBF “binds” these locations to the surface, resulting in a deformation
function D, which takes the control point deflections X and generates a new surface.

We consider several static shape parameterizations (with 6, 14, 30 and 62 design variables) and compare
their performance to two progressive shape control strategies starting from 2-DVs: (1) nested uniform refine-
ment and (2) adaptive refinement. We set a maximum tree depth equivalent to the 62-DV parameterization.
In other words, the two progressive approaches will ultimately arrive at the static 62-DV search space. This
refinement limit prevents the shape control from becoming unreasonably closely spaced.
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Table 2: Case III results.

Chords from Root 0.0 0.6 1.2 1.8 2.4 2.7 2.85 2.97 3.0

Twist (o) 4.2 4.8 4.5 4.1 3.5 3.2 3.0 2.9 2.9

Sectional Lift (2c

l

/b) 0.156 0.156 0.146 0.126 0.094 0.069 0.050 0.030 0.0

V. Viscous Benchmarks

We now turn to the two RANS optimization benchmarks. As our design framework uses an inviscid solver,
the results will not be directly comparable to other viscous results. For Case II, we modify the design problem
slightly to achieve better viscous performance with an inviscid optimization approach. The modification was
guided by viscous analysis from a recently developed 2D Cartesian RANS approach by Berger and Aftosmis.25

A. Case II. Transonic Airfoil Design
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Figure 15: Case II: Initial 6-DV parameteri-
zation and uniform refinement.

Case II revisits transonic airfoil design (Mach 0.734), but this
time with more realistic design constraints. The objective is
again to reduce the drag (J = C

D

), while constraints are
imposed on lift, pitching moment (which is initially violated)
and the area A:

C

L

= 0.824

C

M

� �0.092

A � A

RAE

⇡ 0.07787c

2

We compute adjoint solutions for the drag, lift and pitching moment functionals to compute their gradients.
The area is computed on the discrete surface, and the constraint gradients are di↵erentiated analytically.

The baseline shape is the RAE 2822 airfoil. We parameterize the deformation with the same curve
deformer as in Case I. In addition to angle of attack, there are initially six shape parameters, as shown in
Figure 15. Shape control refinement is uniform. For discretization error control, we set a lower tolerance in
the first search space, and then tighten it to target ±0.5 counts of drag on the second level.

1. Inviscid Optimization: Trial 1 (Pure Inviscid Design)

Figure 16 shows the results of driving the optimization with inviscid flow solutions at the specified flight
conditions. SNOPT rapidly drove down the drag, but after several search directions without noticeably
improving the aerodynamic constraints, it increased its internal constraint weights, rapidly driving the
pitching moment and lift to be satisfied. The shock is nearly eliminated even under the first parameterization.
After refining to 14-DVs (and simultaneously tightening the discretization error tolerance), the shock is
completely eliminated. An additional refinement to 30-DV’s did not yield any further improvent for reducing
the negligible remaining inviscid drag.

2. Viscous Analysis

To check the viscous performance of this design, we computed the flow using the Cartesian RANS solver
mentioned above,25 with a Spalart-Allmaras turbulence model at Re

c

= 6.5 million. The RANS solution is
shown in Figure 17. The inviscidly-designed airfoil does have superior viscous performance to the original
RAE. Consulting Table 3, the viscous C

D

is reduced by 90 counts. However, the presence of the boundary
layer increased the angle of attack necessary to achieve C

L

= 0.824, resulting in higher Mach numbers over
the top surface and thus the presence of a moderately strong shock.

3. Optimization: Trial 2 (TE Deflection)

12 of 18
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RAE 2822

Purpose: Demonstrate 
computational acceleration 
with automatic 
parameterization refinement.

Objective:  Minimize drag at 
Mach 0.79 and Mach 0.82

27 Constraints:  !
‣ (2) Fixed Lift 
‣ (2) Min. Pitching moment 
‣ Min. Area 
‣ (20) Min. 90% thickness 
‣ Trailing edge camber line  
‣ Boat-tail angle
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Cart3D Adjoint-based Design Framework

!20

!

• Inviscid Cartesian cut-cell method 
• Aerodynamic objective and 

constraint gradients via adjoints!
• Geometric constraints 

differentiated analytically 
• SNOPT SQP optimizer 
• Adjoint-driven mesh adaptation

Modify shape

Analyze

Refine shape 
control
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Parameterization
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6 DV

14 DV

62 DV

Curve parameterization 
with direct manipulation

Table 2: Case III results.
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Consider 3 static parameterizations
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14 DV

Compare to uniform 
progressive refinement

(vs.)
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(optimize and refine)

(optimize and refine)

through 62 DV
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Static Parameterizations
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Progressive Parameterization
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Refinement of 
shape control
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Cost
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Factors contributing to acceleration:!
• Early on there are few design variables: 

• Accelerates BFGS rate of improvement 
w.r.t search direction. 

• Reduces # of shape sensitivities and 
gradient projections. 

• Later, more design variables are added, 
preventing optimization from stalling.

Cost per design iteration: 4-8 minutes 
• Geometry generation 
• NDV shape derivative computations 
• 2 adaptively meshed flow solutions 
• 6 adjoints (drag, lift, pitching moment) 
• 29 NDV gradient projections

Wall clock time 
In minutes, plotted at major search 
iterations, on 20 Ivybridge cores
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Optimization Benchmarks
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AIAA 2015-1719 
!
Four optimization 
benchmarks using 
progressive 
parameterization

Case I: 	 Drag minimization for symmetric

	 	 airfoil containing NACA0012 

	 	 (M0.85, inviscid)

Case II: 	Drag minimization for airfoil at fixed 

	 	 lift, pitching moment and area 

	 	 (M0.724, viscous)

Case III: 	Wing twist for minimum 
	 	 induced drag at fixed lift 

	 	 (M0.5, inviscid)

Case IV: 	Drag minimization for swept wing at 	
	 	 fixed lift, pitching moment and volume 

	 	 (M0.85, viscous)
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Outline
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✓ Introduction 
✓ How does refinement work? !

‣ Geometry modelers!
‣ Refinement mechanics 

!

✓ When should refinement happen?!
‣ Pacing  
‣ Example 1 — Transonic airfoil design 

!

‣ Where should the shape control be refined? !
‣ Adaptively choosing the best parameters 
‣ Example 2 — Discovering necessary parameters
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Candidate Shape Parameters
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candidates

Add the most important shape control. 
‣ Goal: Further accelerate design by using a 

more optimal distribution of shape control.

1. Modeler provides a list of possible shape 
control refinement locations.
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Adaptive Refinement
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Priority queue

1. Modeler provides a list of possible shape 
control refinement locations. 
2. Rank candidates by relative “importance”.
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Candidate Shape Parameters
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1. Modeler provides a list of possible shape 
control refinement locations. 
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@X

c

, and a Hessian approximation @2J
@X2

c

. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@X

c

, and a Hessian approximation @2J
@X2

c

. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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derivatives indicate how fast that rate of return will decrease. The minimizer of this fit has an analytically
known location and value. Conceptually, this minimal value is an estimate of how much design improvement
is possible under that parameterization. This leads to an intuitive importance indicator

IH(Cc) ⌘ ��Jexp(Cc) =
1

2

@J
@Xc

T ✓
@2J
@X2

c

◆�1
@J
@Xc

(5)

which prioritizes search spaces with the highest capacity for design improvement.

!11

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
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the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:
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Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),
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, and a Hessian approximation @2J
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The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1
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(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =
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@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
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which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
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J (Xprev)

Figure 6: Local first- and second-order fits (dotted
lines) of a candidate search space’s actual behavior
(blue). With second-derivative information, the ex-
pected improvement �Jexp can be estimated. A sec-
ond candidate search space with higher gradients (red)
may actually o↵er less potential design improvement
if its second derivatives are also high.

In the Section V, we will show that IH performs ex-
ceptionally well, even on a highly misscaled problem. Un-
fortunately, for aerodynamic problems, no estimate of the
Hessian for the candidate design space is readily available,
without the prohibitive cost of 2NDV finite-di↵erenced
flow and adjoint solutions. In a well-scaled problem, we
might approximate the Hessian as the identity matrix,
yielding an indicator that is more readily computable:

IG(Cc) =
1

2

@J
@Xc

T @J
@Xc

=
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X

i

✓
@J
@Xci

◆2

(6)

For many aerodynamic problems, however, the relative
design variable scales are orders of magnitude di↵erent
from each other. As we will show in the next section, this
renders IG a nearly useless predictor of performance. To
rectify this, a simple diagonal scaling matrix D can also
be used:

ID(Cc) =
1

2

@J
@Xc

T

D�1 @J
@Xc

(7)

Ideally, D is the diagonal of the Hessian. If computing this
is impractical, the values might be specified as scale factors by the user, as commonly done in optimization.
Alternatively, the Hessian approximation from the previous design space (built up by a quasi-Newton
optimizer), might be transferred to the candidate design space, although this requires information about the
similarity or spatial organization of shape parameters. We leave this for future work.

Function 2: GradientIndicator(·)
Input: Surface S, shape control C,

objective adjoint solution  
Result: Indicator IG

D,X � Parameterize(S,C)
foreach Xi in X do

@S
@Xi
 � ShapeDerivative(D, Xi)

@J
@Xi
 � ProjectGradient( , @S

@Xi
)

end

IG  �
P

i(
@J
@Xi

)2

The objective gradients have modest additional cost.
Function 2 shows how IG is assembled. During optimiza-
tion, the adjoint is used to e�ciently compute gradients with
respect to arbitrary shape design variables. Now, after a
search space refinement is triggered, we reuse the adjoint so-
lution from the final design in the previous search space to
rapidly compute gradients with respect to the new candidate
design variables. Reuse of the adjoint is possible only if the
geometry modeler exactly preserves the shape when changing
search spaces, so that the final shape in the previous search
space is identical to the initial shape for the next search space.
This is generally true for all discrete modelers, which operate
on a static baseline shape, but requires special attention with
constructive modelers, like CAD.

1. Indicator Comparison Example

We briefly compare the performance of these three indicators on a geometric shape-matching problem and
on an airfoil drag reduction problem.
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Minimizer gives expected design improvement:

Rank parameters by ability to improve design.

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@X

c

, and a Hessian approximation @2J
@X2

c

. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1
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@Xc

T @2J
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@J
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(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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Figure 13: Transonic airfoil: Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

The problem is geometric shape matching to a swept, twisted wing. In shape matching, we examine the
convergence from a baseline geometry to an attainable target shape. The objective function aims to minimize
the deviation between the current shape and the target in a least-squares sense:

J =
NvertsX

i=1

kvi � v⇤
i k2 (10)

where vi are the current vertex coordinates and v⇤
i are the corresponding target vertex coordinates. The

wing is represented by a discrete geometry with Nverts ⇡ 197,000.
Importantly, this is a problem with a known solution in two senses. We not only know the optimal shape,

but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to e�ciently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 16 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper or
sweep. The wing planform deformation is parameterized using the technique illustrated in Figure 3, which
linearly interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-
sections. The initial parameterization has three design variables: twist, chord and sweep at the tip station
(marked “L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (“L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at di↵erent
stations, allowing for “anisotropic” shape control. The target geometry is a wing with the same airfoil section,
but substantial twist, chord-length and sweep profiles, as shown in Figure 16. For this academic example,
the target sweep profile is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic.

The target shape is unattainable under the initial parameterization. Only through su�cient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and su�cient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
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Figure 13: Transonic airfoil: Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

The problem is geometric shape matching to a swept, twisted wing. In shape matching, we examine the
convergence from a baseline geometry to an attainable target shape. The objective function aims to minimize
the deviation between the current shape and the target in a least-squares sense:

J =
NvertsX

i=1

kvi � v⇤
i k2 (10)

where vi are the current vertex coordinates and v⇤
i are the corresponding target vertex coordinates. The

wing is represented by a discrete geometry with Nverts ⇡ 197,000.
Importantly, this is a problem with a known solution in two senses. We not only know the optimal shape,

but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to e�ciently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 16 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper or
sweep. The wing planform deformation is parameterized using the technique illustrated in Figure 3, which
linearly interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-
sections. The initial parameterization has three design variables: twist, chord and sweep at the tip station
(marked “L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (“L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at di↵erent
stations, allowing for “anisotropic” shape control. The target geometry is a wing with the same airfoil section,
but substantial twist, chord-length and sweep profiles, as shown in Figure 16. For this academic example,
the target sweep profile is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic.

The target shape is unattainable under the initial parameterization. Only through su�cient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and su�cient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
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Figure 13: Transonic airfoil: Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

The problem is geometric shape matching to a swept, twisted wing. In shape matching, we examine the
convergence from a baseline geometry to an attainable target shape. The objective function aims to minimize
the deviation between the current shape and the target in a least-squares sense:

J =
NvertsX

i=1

kvi � v⇤
i k2 (10)

where vi are the current vertex coordinates and v⇤
i are the corresponding target vertex coordinates. The

wing is represented by a discrete geometry with Nverts ⇡ 197,000.
Importantly, this is a problem with a known solution in two senses. We not only know the optimal shape,

but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to e�ciently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 16 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper or
sweep. The wing planform deformation is parameterized using the technique illustrated in Figure 3, which
linearly interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-
sections. The initial parameterization has three design variables: twist, chord and sweep at the tip station
(marked “L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (“L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at di↵erent
stations, allowing for “anisotropic” shape control. The target geometry is a wing with the same airfoil section,
but substantial twist, chord-length and sweep profiles, as shown in Figure 16. For this academic example,
the target sweep profile is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic.

The target shape is unattainable under the initial parameterization. Only through su�cient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and su�cient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
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Shape matching

derivatives indicate how fast that rate of return will decrease. The minimizer of this fit has an analytically
known location and value. Conceptually, this minimal value is an estimate of how much design improvement
is possible under that parameterization. This leads to an intuitive importance indicator

IH(Cc) ⌘ ��Jexp(Cc) =
1

2

@J
@Xc

T ✓
@2J
@X2

c

◆�1
@J
@Xc

(5)

which prioritizes search spaces with the highest capacity for design improvement.

!11

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =
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Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
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which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.
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gradient-projection function that the design framework applies to existing design variables.
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:
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Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),
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, and a Hessian approximation @2J
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flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
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J (Xprev)

Figure 6: Local first- and second-order fits (dotted
lines) of a candidate search space’s actual behavior
(blue). With second-derivative information, the ex-
pected improvement �Jexp can be estimated. A sec-
ond candidate search space with higher gradients (red)
may actually o↵er less potential design improvement
if its second derivatives are also high.

In the Section V, we will show that IH performs ex-
ceptionally well, even on a highly misscaled problem. Un-
fortunately, for aerodynamic problems, no estimate of the
Hessian for the candidate design space is readily available,
without the prohibitive cost of 2NDV finite-di↵erenced
flow and adjoint solutions. In a well-scaled problem, we
might approximate the Hessian as the identity matrix,
yielding an indicator that is more readily computable:

IG(Cc) =
1

2

@J
@Xc

T @J
@Xc

=
1

2

X

i

✓
@J
@Xci

◆2

(6)

For many aerodynamic problems, however, the relative
design variable scales are orders of magnitude di↵erent
from each other. As we will show in the next section, this
renders IG a nearly useless predictor of performance. To
rectify this, a simple diagonal scaling matrix D can also
be used:

ID(Cc) =
1

2

@J
@Xc

T

D�1 @J
@Xc

(7)

Ideally, D is the diagonal of the Hessian. If computing this
is impractical, the values might be specified as scale factors by the user, as commonly done in optimization.
Alternatively, the Hessian approximation from the previous design space (built up by a quasi-Newton
optimizer), might be transferred to the candidate design space, although this requires information about the
similarity or spatial organization of shape parameters. We leave this for future work.

Function 2: GradientIndicator(·)
Input: Surface S, shape control C,

objective adjoint solution  
Result: Indicator IG

D,X � Parameterize(S,C)
foreach Xi in X do

@S
@Xi
 � ShapeDerivative(D, Xi)

@J
@Xi
 � ProjectGradient( , @S

@Xi
)

end

IG  �
P

i(
@J
@Xi

)2

The objective gradients have modest additional cost.
Function 2 shows how IG is assembled. During optimiza-
tion, the adjoint is used to e�ciently compute gradients with
respect to arbitrary shape design variables. Now, after a
search space refinement is triggered, we reuse the adjoint so-
lution from the final design in the previous search space to
rapidly compute gradients with respect to the new candidate
design variables. Reuse of the adjoint is possible only if the
geometry modeler exactly preserves the shape when changing
search spaces, so that the final shape in the previous search
space is identical to the initial shape for the next search space.
This is generally true for all discrete modelers, which operate
on a static baseline shape, but requires special attention with
constructive modelers, like CAD.

1. Indicator Comparison Example

We briefly compare the performance of these three indicators on a geometric shape-matching problem and
on an airfoil drag reduction problem.
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@X

c

, and a Hessian approximation @2J
@X2

c

. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
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(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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Shape Matching Video
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Recovery of Necessary Parameters
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Adaptive Summary
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• For shape-matching: 
• We can recover the necessary parameters to 

solve the problem. 
• Completely ignoring second-order information 

leads to very misleading predictions. 
• Approximation of Hessian diagonal is sufficient 

to make decent predictions. 
• Ongoing work: extend results to 

aerodynamic functionals.
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Conclusions
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Demonstrated adaptive shape parameterization 
for aerodynamic optimization. 
‣ Automates process of shape control refinement. 

‣ Progressive, uniform shape parameterization can 
accelerate optimization (here ~3x).
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Conclusions
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Ongoing work: !
‣ Adaptive refinement can discover the important 

parameters, but second order information is essential.

Demonstrated adaptive shape parameterization 
for aerodynamic optimization. 
‣ Automates process of shape control refinement. 

‣ Progressive, uniform shape parameterization can 
accelerate optimization (here ~3x).
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Adaptive Shape Control for Aerodynamic Design
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