

- 1. Introduction to Shape Parameterization
- 2. Automatic Adaptive Parameterization
- 3. Verification Studies
- 4. Design Examples

Aerodynamic Shape Optimization

3

Shape Parameterization

- Shape parameterization reduces continuous design space into finite search space
- Reduces range of reachable shapes

Static Parameterization

Motivation

- Design of complex vehicles in unfamiliar settings, driven by highfidelity simulations.
- Choice of shape parameters impacts:
 - Bias towards familiar designs.
 - Ability to approximate the continuous optimal solution. (Want *more* DOF)
 - Optimization cost. (Want fewer DOF)

Research Goal:

Develop system for automatic, adaptive shape parameterization refinement during optimization

Requirements:

- Gradually approach continuous optimum (convergent)
- Without a priori knowledge (automated)
- Using as few design variables as possible (adaptive)

Previous Work

Progressive (uniform "h"-refinement)

Gradually increase resolution

- (1991) Kohli and Carey Multifidelity shape representation for structural optimization
- (1993) Marco et al. Aerodynamic optimization with nested parameters

Redistribution (*"r"-refinement*)

- Improve distribution of shape control
- (2004, 2006) Desideri and El Majd, Duvigneau — Minimize total variation of Bezier/FFD control points
- ◆(2012) Hwang and Martins Equally distribute arc-length of curve between B-spline control points

These approaches are **insensitive to the** goals of aerodynamic optimization.

Towards **goal-oriented** adaptation:

- •(2011) Han and Zingg Discrete refinement approach
 - **Restrictions:** Single-component design, only localized constraints, can only add one new variable at a time
- (2014) Poole and Allen Redistribution approach
 - Restrictions: Only geometric matching of airfoils
- (2015) Anderson Discrete adaptation approach appropriate for general aerodynamic design problems

Contributions

- Complete **system** for automatic, adaptive parameterization
- Novel **refinement indicator** that enables adaptive parameterization for general problems:
 - Multiple components
 - Multiple classes of shape control
 - High curvature variation in design space
 - General constraints
- Several new algorithms and strategies to accelerate and automate adaptation
- First verification of robust convergence of adaptation
- Implementation, testing in a production design environment

Outline

✓ Introduction

Adaptive Parameterization

- Discrete Adaptation (How?)
- Refinement Indicator (Where?)
- Adaptation Strategy
- Verification
- Design Examples

Shape Control Refinement

View shape parameterization as **binary tree**:

Shape Control Refinement

Applicable to most parameterization techniques

NURBS

Shape Control Refinement

View shape parameterization as **binary tree**:

Configuration Design

Outline

✓ Introduction

Adaptive Parameterization

- ✓ Discrete Adaptation
- Refinement Indicator
- Adaptation Strategy
- Verification
- Design Examples

Adaptive Refinement

Goal: Determine **most important** candidate parameters

Previous Approach

18

 (2011) Han and Zingg rank parameters by magnitude of objective gradient with respect to candidate design variables.[†]

[†] (2011) X. Han, D. Zingg. "An Evolutionary Geometry Parametrization for Aerodynamic Shape Optimization." AIAA 2011-3536

Ignores constraints

Inconsistent units Ignores curvature variation Insensitive to redundancy

Ignores constraints

Inconsistent units

Ignores curvature variation Insensitive to redundancy

Ignores constraints Inconsistent units Ignores curvature variation

Insensitive to redundancy

Either one would be useful, but not both

New Refinement Indicator

Expected Feasible Design Improvement

Solve for Newton step to predicted optimum

$$\delta S^{\star} = -\mathcal{H}^{-1} \left(\frac{\partial \mathcal{J}}{\partial S} + \lambda \frac{\partial \mathcal{C}^{a}}{\partial S} \right) \xrightarrow{\text{Gradient}} \text{Gradient}$$

$$uadratic \text{ Taylor expansion} \xrightarrow{\text{Hessian}} \text{Hessian}$$

$$\mathcal{J}(S_{0} + \delta S) \approx \mathcal{J}(S_{0}) + \left\langle \frac{\partial \mathcal{J}}{\partial S}, \delta S \right\rangle + \frac{1}{2} \left\langle \mathcal{H} \delta S, \delta S \right\rangle + \dots$$

Refinement Indicator

$$\Delta \mathcal{J}_{exp}^{\infty} = \frac{1}{2} \left\langle \left(\frac{\partial \mathcal{J}}{\partial \mathsf{S}} + \boldsymbol{\lambda} \frac{\partial \mathcal{C}^{a}}{\partial \mathsf{S}} \right), \mathcal{H}^{-1} \left(\frac{\partial \mathcal{J}}{\partial \mathsf{S}} + \boldsymbol{\lambda} \frac{\partial \mathcal{C}^{a}}{\partial \mathsf{S}} \right) \right\rangle$$

Expected feasible objective reduction in **candidate** search space:

KKT stationarity 0 at optimum

$$I \equiv \Delta \mathcal{J}_{exp}^{\infty} = \frac{1}{2} \left\langle \left(\frac{\partial \mathcal{J}}{\partial \mathbf{X}_c} + \boldsymbol{\lambda} \frac{\partial \mathcal{C}^a}{\partial \mathbf{X}_c} \right), (\mathcal{M}\mathcal{H})^{-1} \left(\frac{\partial \mathcal{J}}{\partial \mathbf{X}_c} + \boldsymbol{\lambda} \frac{\partial \mathcal{C}^a}{\partial \mathbf{X}_c} \right) \right\rangle$$

Use as **refinement indicator**

Has sensible **units** $[I] = \frac{\text{Drag}}{\text{ft}} \left(\frac{\text{ft}^2}{\text{Drag}}\right) \frac{\text{Drag}}{\text{ft}} = \text{Drag}$

"expected drag reduction"

Refinement Indicator

Indicator Computation — Gradients

Indicator Computation — Hessian Estimation

$$I = \frac{1}{2} \left\langle \left(\frac{\partial \mathcal{J}}{\partial \mathbf{X}_c} + \boldsymbol{\lambda} \frac{\partial \mathcal{C}^a}{\partial \mathbf{X}_c} \right), (\mathcal{M}\mathcal{H})^{-1} \left(\frac{\partial \mathcal{J}}{\partial \mathbf{X}_c} + \boldsymbol{\lambda} \frac{\partial \mathcal{C}^a}{\partial \mathbf{X}_c} \right) \right\rangle$$

Estimate Hessian from **quasi-Newton** approximation in previous space

Outline

✓ Introduction

Theory and Approach

- ✓ Discrete Adaptation
- ✓ Refinement Indicator
- Adaptation Strategy
- Verification
- Design Examples

When to refine?

Growth rate

Adding Multiple Parameters

- Adaptation: "Find the best N out of M parameters"
- Properly a **combinatorial optimization** problem
 - Not separable for most deformers
 - But conducive to approximate solutions
- I use an approximate constructive (greedy) algorithm[†]

[†] (2015) **Anderson**, G.R., Aftosmis, M. J. "Adaptive Shape Control for Aerodynamic Design." AIAA 2015-0398

Regularity

Outline

✓ Introduction

✓ Theory and Approach

Verification

- Correctness Does the indicator predict actual design improvement?
- Robustness Does the approach always converge to the continuous optimum?
- Design Examples

Verificat

Initial F

Shape Matching under Initial Parameterization

Indicator Validation

For each candidate:

1. **Predict** design improvement. With indicator:

$$I = \frac{1}{2} \left\langle \left(\frac{\partial \mathcal{J}}{\partial \mathbf{X}_c} + \boldsymbol{\lambda} \frac{\partial \mathcal{C}^a}{\partial \mathbf{X}_c} \right), (\mathcal{M}\mathcal{H})^{-1} \left(\frac{\partial \mathcal{J}}{\partial \mathbf{X}_c} + \boldsymbol{\lambda} \frac{\partial \mathcal{C}^a}{\partial \mathbf{X}_c} \right) \right\rangle$$

2. Measure **actual** improvement. Run optimization for each candidate.

Indicator Validation

Approximations

Recovery of Necessary Parameters

Verification Study 2: Pressure Signature Matching

Convergence to Continuous Optimum

Convergence to Continuous Optimum

Convergence Rate

Efficient in use of design variables

Asymptotic convergence rate of $\mathcal{J}^k_\star - \mathcal{J}^\infty_\star$

	Uniform	Adaptive	
Case		Strategy 1	Strategy 2
1	2.6	8.3	5.0
2	2.4	5.2	5.6
3	2.7	5.7	4.7
mean	2.6	5.75	
$\frac{\Delta \mathcal{J}}{\Delta N_{DV}} *$	$\sim 6 imes$	$\sim {f 54} imes$	

* Reduction in objective for $2 \times$ increase in N_{DV}

Refinement Patterns

Adaptive System

Outline

- ✓ Introduction
- ✓ Theory and Approach
- ✓ Verification

Design Examples

- Implementation
- Sonic boom signature matching
- Adaptive flaps for Truss-braced wing

Discrete Geometry

- Direct manipulation of surface tessellations
 - CFD-ready always high resolution
 - Allows optimization of "legacy" geometries

blender

- Serves as **geometry engine** for optimization
- Script-driven surface mesh deformation
- Implemented a number of custom deformation techniques
- (2012) Anderson and Aftosmis, "Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design". AIAA Paper 2012-0965.

Cart3D

- Cartesian cut-cell method with automated meshing of complex configurations
- Inviscid solver with adjoint-driven
 - Adaptive meshing
 - Error estimates
 - Functional gradients

Density adjoint of objective

Optimizer

SNOPT – Sparse Nonlinear **Opt**imizer

- Quasi-Newton method gradually builds up Hessian approximation
- SQP method handles nonlinear inequality constraints
- Use full-memory BFGS (test cases involve <1000 DVs)

Can also use any general gradient-based optimizer:

► SLSQP, SciPy, Knitro, pyOpt...

Boom Design

Inverse Design Procedure

3. **Reshape vehicle** to match the near-field signal

 $\mathcal{J} = \frac{1}{p_{\infty}^2} \int (p - p_{\text{target}})^2 dS$

- 2. Find **near-field signal** that meets these requirements
- 1. Determine acceptable noise characteristics at **ground**

Target Seeb-ALR

Target Nearfield Signature

Baseline Geometry

Mesh Adaptation

Mesh Adaptation

Adaptive Parameterization

Adaptive Parameterization

Adaptive Wing Morphing

(2015) Rodriguez, Aftosmis, Nemec, Anderson, "Optimized off-design performance of flexible wings with continuous trailing-edge flaps." AIAA Paper 2015–1409, AIAA SciTech 2015, Kissimmee, FL.

Flap Adaptation Procedure

- 1) Morph: Optimize flap deflections for minimum drag.
 - Refine flap topology: Add the one* additional flap that would best allow the drag to be reduced.

*Add flaps **one** at a time, because the cost associated with every flap is real — want to find **minimal** parameterization!

Flap Refinement

First Step

Verification of Ranking

Flap Deflection History

Final flap topology

Inboard	Outboard			
-1.15° -1.65°	-0.6°	-0.4°		
Final deflections				

(cumulative deflection at TE)

Negative deflection downward. Alpha lowered to compensate lift.

Baseline geometry has substantial **wave drag** through truss

Cost vs. Flap Count

71

Conclusions

- Demonstrated **adaptive shape parameterization** system for automated, high-fidelity aerodynamic optimization.
 - Enables hands-off design exploration for unfamiliar problems.
 - Provides feedback about the design problem.
- Verification studies confirm that robust **convergence** to continuous optimum is possible.
- A careful adaptive strategy makes the approach substantially **more efficient** both in terms of design variables and computational time.

New Techniques

- Goal-oriented **refinement indicator** targeting high potential shape parameters.
 - Substantially improves results over previous best indicator, appropriate for general classes of problems.
 - Leverages information already available during optimization no a priori knowledge required.
- Approximate **Hessian estimation** (prolongation operator)
 - Could also be used to accelerate design in finer design spaces.
- Constructive algorithm to efficiently find an approximate solution to the combinatorial adaptation problem.
- Cost-benefit approaches to automatically determine how many parameters to add and when to trigger refinement.

Optimization Benchmarks

Transonic wing and airfoil design benchmarks

Combined two automated, adaptive elements:

Progressive parameterization

Adaptive mesh refinement

[†] (2015) **Anderson**, Nemec, Aftosmis. "Aerodynamic Shape Optimization Benchmarks with Error Control and Automatic Parameterization." AIAA 2015-1719

Publications

- 1. Anderson and Aftosmis, "Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design". AIAA Paper 2012-0965, 50th AIAA ASM Meeting and Exhibit, Nashville, TN, January 2012.
- 2. Anderson, Aftosmis, Nemec, "Constraint-based Shape Parameterization for Aerodynamic Design". ICCFD7 Paper-2001. Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, HI, July 2012.
- 3. Anderson and Aftosmis, "Adaptive shape parameterization for aerodynamic design." NASA Technical Memorandum, May 2015.
- 4. Rodriguez, Aftosmis, Nemec, Anderson, "Optimized off-design performance of flexible wings with continuous trailing-edge flaps." AIAA Paper 2015–1409, AIAA SciTech 2015, Kissimmee, FL, http://dx.doi.org/10.2514/6.2014-1409, January 2015.
- 5. Anderson, Nemec, Aftosmis, "Aerodynamic shape optimization benchmarks with error control and automatic parameterization." AIAA Paper 2015-1719, Kissimmee, FL, http://dx.doi.org/ 10.2514/6.2015-1719, January 2015.
- 6. Anderson and Aftosmis, "Adaptive shape control for aerodynamic design." AIAA Paper 2015-0398, AIAA SciTech 2015, Kissimmee, FL, http://dx.doi.org/10.2514/6.2015-0398, January 2015.

Future Work

Major outstanding topic:

Discovering effective classes of shape control

Backup Slides

But How Fast Is It?

Progressive vs. Static

Cost

Factors contributing to acceleration:

- Early on there are few design variables:
 - Accelerates **BFGS rate of improvement** w.r.t search direction.
 - Reduces # of shape sensitivities and gradient projections.
- Later, more design variables are added, preventing optimization from stalling.

Wall clock time

In minutes, plotted at major search iterations, on 20 lvybridge cores

Impact of Parameterization

Progressive vs. Static

Adaptive vs. Uniform

Goals of Adaptation

to solve problem