AIAA 2015-1719

Aerodynamic Shape Optimization Benchmarks with Error Control and Automatic Parameterization

George Anderson

Stanford University Aeronautics and Astronautics

Marian Nemec

Applied Modeling and Simulations Branch Science & Technology Corp.

Michael Aftosmis

Applied Modeling and Simulations Branch NASA Ames Research Center

5-9 January 2015, Kissimmee, FL

Parametric Shape Optimization

NASA

Start with baseline aerodynamic shape

Parametric Shape Optimization

Minimize **objective:**

Subject to constraints:

Motivation

- AIAA Aerodynamic Design Optimization Discussion Group (ADODG)
 - Encourage cross-comparisons and communication among research groups.
 - Demonstrate **accuracy** of flow solutions.
 - Explore **adequacy** of shape parameters.
- Posed four optimization **benchmark problems**:
 - Airfoil and wing design
 - Inviscid/viscous, subsonic/transonic conditions
 - Lift, pitching moment, volume constraints

- Demonstrate use of Cart3D inviscid design framework to solve the benchmarks.
- Automated approach:
 - 1. **Adaptive mesh refinement** to control discretization error.
 - 2. **Progressive shape parameterization** to efficiently approach the continuous optimal design.

Cart3D Design Framework

- Cartesian cut-cell method
- Inviscid flow solver:
 - Adjoint-driven flow meshing —
 - Adjoint-derived objective and constraint gradients
- SNOPT SQP optimizer for general constrained problems
- **2D RANS** flow solver used for verification (not optimization)

Side-viev

Inviscid Benchmarks

Optimize **symmetric airfoil** for minimum drag. **(M0.85, inviscid)**

- Simple geometry
- Highly sensitive optimum

Inviscid Benchmarks

Optimize symmetric airfoil for minimum drag. (M0.85, inviscid)

- Simple geometry
- Highly sensitive optimum

Optimize wing twist for minimum induced drag at fixed lift. (M0.5, inviscid)

- Subsonic, induced drag
- Already close to optimum
- High meshing requirements

Inviscid Approach to Viscous Benchmarks

Optimize **transonic airfoil** for minimum drag at fixed lift, pitching moment and area. (M0.724, viscous)

 Use inviscid solver to improve viscous performance

 Demonstrate automated wing design.

2

Outline

Approach

- Adaptive mesh refinement
- Progressive shape parameterization

Optimization results:

- Case 1 Symmetric transonic airfoil design
- Case 3 Twist for minimal induced drag
- Case 2 Transonic airfoil
- Case 4 Transonic wing

Discretization Error Control

Mesh is adapted to compute drag accurately at each design iteration.[†]

^{*†*} (2014) Nemec and Aftosmis, "Toward Automatic Verification of Goal-Oriented Flow Simulations." NASA TM-2014-218386 GRA — Jan. 2015

Discretization Error Control

Error tolerance is set low enough to ensure reliable design improvement.[†]

[†] (2013) Nemec and Aftosmis, *"Output Error Estimates and Mesh Refinement in Aerodynamic Shape Optimization." AIAA 2013-0865*

Error Control Scheduling

Use **progressive** error targets to accelerate the optimization.

Shape Manipulation

14

^{*†*} (2012) Anderson, *et al.*, "Constraint-based Shape Parameterization for Aerodynamic Design." ICCFD7-2001. GRA — Jan. 2015

Shape Parameterization

Progressive Parameterization

Progressive Parameterization

Approach Summary

Discussion group suggested results:

- Demonstrate accuracy of the flow solutions driving the optimization:
 - Automatically adapt the flow mesh to control discretization error in the aerodynamic functionals.
 - (Provides mesh convergence information at each design iteration.)
- 2. Address the **adequacy** of shape parameterization to explore the design space:
 - Automatically refine the shape parameterization during design, until objective stops improving with additional shape control.

Outline

Approach

- ✓ Adaptive mesh refinement
- ✓ Progressive shape parameterization

Optimization results:

- Case 1 Symmetric transonic airfoil design
- Case 3 Twist for minimal induced drag
- Case 2 Transonic airfoil
- Case 4 Transonic wing

Objective: Minimize drag at Mach 0.85

Constraints: Symmetric, contain original NACA0012*

Start with **7** design variables, uniformly refine to **15**, then **31**.

Case 1: Optimization History

Case 1: Final Shape

Cross-Comparison

Courtesy of ONERA⁺

[†] (2015) Meheut et al., "Gradient-Based Single and Multi-point Aerodynamic Optimizations with the elsA Software."

Mesh Comparison

Farfield distance: 96 chords

Mesh Convergence

Impact of Parameterization

Impact of Parameterization

iterations, on lvybridge node - 20 cores

Outline

Approach

- ✓ Adaptive mesh refinement
- ✓ Progressive shape parameterization

Optimization results:

- ✓ Case 1 Symmetric transonic airfoil design
- Case 3 Twist for minimal induced drag
- Case 2 Transonic airfoil
- Case 4 Transonic wing

Case 3: Twist Optimization

Geometry: NACA 0012 wing, $I\!\!R\,6$

Objective: Minimize drag at Mach 0.5

Constraint: $C_L = 0.375$

Outline

Approach

- ✓ Adaptive mesh refinement
- ✓ Progressive shape parameterization

Optimization results:

- Case 1 Symmetric transonic airfoil design
- ✓ Case 3 Twist for minimal induced drag
- Case 2 Transonic airfoil
- Case 4 Transonic wing

Case 2: Transonic Airfoil Design

Objective: Minimize drag at Mach 0.734

Constraints:

 $C_L = 0.824$ $C_M \ge -0.092$ (initially violated)

 $A \ge A_{RAE} \approx 0.07787$

Case 2: Inviscid Approach

- Use **inviscid** flow solutions to drive optimization.
- Verify improvement with viscous analysis.
- To encourage good viscous performance, slightly decamber the trailing edge during inviscid analyses.[†]

$$y = y + \left(\frac{x - 0.8}{0.2}\right)^3 \sin(\theta)$$

[†](1998) Campbell, R. L., "Efficient Viscous Design of Realistic Aircraft Configurations," AIAA 98-2539 (2013) Smith, Nemec and Krist, "Integrated Nacelle-Wing Shape Optimization for an Ultra-High Bypass Fanjet Installation on a Single-Aisle Transport Configuration." AIAA 2013-0543

36

Case 2: Cost

Wall clock time

Cost per design iteration:

- Geometry generation
- 1 Adaptively meshed flow solution
- 3 adjoints (drag, lift, pitching moment)
- 6-14 shape derivative computations
- 24-56 gradient projections
- Total time per design iteration:
 - Level 1: ~2.5 minutes/iteration
 - Level 2: ~3.5 minutes/iteration

Inviscid approach reduced total drag by 72 counts.

2₀

0.2

0.4

0.6

Decambering helped maintain parity between trimmed angle of attack for inviscid and viscous solutions.

0.8

Outline

Approach

- ✓ Adaptive mesh refinement
- ✓ Progressive shape parameterization

Optimization results:

- Case 1 Symmetric transonic airfoil design
- ✓ Case 3 Twist for minimal induced drag
- Case 2 Transonic airfoil
- Case 4 Transonic wing

Case 4: Transonic Wing Design

Baseline: Common Research Model (CRM) (wing only)

Case 4: Transonic Wing Design

Parameterization

P0: 9 design variables
2 twist, 6 airfoil + alpha
P1: 27 design variables
4 twist, 22 airfoil + alpha
P2: 71 design variables
8 twist, 62 airfoil + alpha

Case 4: Results

Case 4: Results

- Used Cart3D inviscid design framework to solve benchmark problems.
- Combined two automated, adaptive elements:

Adaptive mesh refinement

Progressive parameterization

Summary

Achieved 10x inviscid drag reduction with fully automated approach.

Used inviscid design approach to achieve 72 counts **total** drag reduction.

Twisted wing to improve span efficiency.

Demonstrated **automated system** on full wing design problem with constraints.