CART3D SIMULATIONS FOR THE 2ND AIAA SONIC BOOM PREDICTION WORKSHOP

George R. Anderson Science \& Technology Corp.

Michael J. Aftosmis
NASA Ames

Marian Nemec

NASA Ames

Motivation

- Commercial supersonic flight banned over the US because of objectionable sonic boom
- Hope to overturn this with demonstrably quiet aircraft (e.g. QueSST)
- CFD tools are a major contributor to design efforts
- Sonic Boom Prediction Workshops
- (2008) NASA FAP SBPW
- (2014) AIAA SBPWI
- (20I7) AIAA SBPW2

SONIC BOOM PHYSICS

Nearfield Workshop

- Propagation Workshop
- Conclusions

OUTLINE

Nearfield Workshop — Cart3D

- Meshing approach - Alignment + Adaptation
- Boom Carpets - Azimuthal Alignment
- Results for Cases I, II, IV
- Local Error Analysis
- Propagation Workshop
- Conclusions

NeArfieLD CASES

JWB

SUBMITTED:

- All 4 cases, all azimuths, 3 mesh refinement levels
- Propagated signals and loudness metrics

CFD AND MESHING

Flow Solver - Cart3D vI. 5

- Steady, inviscid flow
- 2nd-order upwind method
- Multigrid acceleration
- Domain decomposition - highly scalable

Automatic Meshing

- Multilevel Cartesian mesh with embedded boundaries
- Handles arbitrarily complex vehicle shapes

Goal-Oriented Mesh Adaptation

- Mesh automatically refined in locations with most impact on signatures
- Discretization error estimates computed via adjoint method

Basic Meshing Approach:

- Rotate mesh very close to the Mach angle
- Stretch in the principal propagation direction
- Adapt mesh to resolve line sensor outputs

$$
\mathcal{J}_{r}=\int_{0}^{L} w(\ell)\left(\frac{p(\ell)-p_{\infty}}{p_{\infty}}\right)^{2} d \ell
$$

$$
r / L=5
$$

ADAPTATION

Adapt mesh locally to accurately compute off-body signatures (adjoint-weighted residuals)

$r / L=5$
$r / L=3$

Mesh Convergence Guidelines

Submit "coarse", "medium", "fine" mesh solutions

- Quantitative guideline: Asymptotic convergence of pressure functionals
- Qualitative guidelines:

Consistent signal features over consecutive meshes

AXIE - SIGNALS

Off-Track Signatures

Off-Track Signatures

- Straightforward approach - compute all sensors with a single mesh
- With Cartesian-aligned grids, off-track angles are misaligned, constraining aspect ratio and leading to high cell-counts.

MeSH SpLITTING

Use independent meshes,

each rotated to off-track angle

Mesh 2

MeSH SpLITTING

- Azimuthal alignment improves quality/cost and permits higher stretching - Can run off-track angles in parallel - 6 compute nodes
- Scriptable [new Cart3D scripts available]

Mesh 2

Mesh 4

JAXA WING-BODY (JWB)

JWB - Fine Mesh Signatures

Each off-track angle - $\mathbf{3 0} \mathbf{- 3 3 M}$ cells - $\mathbf{2 h r} \mathbf{3 0} \mathbf{m i n}$ on 28 cores Includes flow solution + all meshing, adjoint solutions, error estimation, etc.

CONCEPT 25D

(Government Reference Vehicle!)
Re-contoured fuselage and tail bulb

[^0]
C25P

Inlet Conditions
$\frac{p}{p_{\infty}}=3.26$

Plenum Conditions

$$
\begin{aligned}
& \frac{p_{t}}{p_{\infty}}=14.54 \\
& \frac{T_{t}}{T_{\infty}}=7.87
\end{aligned}
$$

C25p
On-track solution ($\sim 35 \mathrm{M}$ cells)

Density

C25p
 On-track solution ($\sim 35 \mathrm{M}$ cells)

Pressure Coefficient

Plume is more expensive

- Vehicle is effectively longer
- Plume evolves with mesh

Each off-track angle - 35M cells - $\mathbf{4 h r} 30 \mathrm{~min}$ on 28 cores
Includes flow solution + all meshing, adjoint solutions, error estimation, etc.

C25p - SIGNATURES

LOCAL ERROR ANALYSIS

Local error estimates via extrapolation
See AIAA Paper 201 7-3255 for details

Nearfield Workshop

Propagation Workshop — sBOOM

Numerical approach
Propagation Results:
Nearfield workshop signatures
Propagation workshop signatures

Conclusions

Atmospheric Propagation with sboom

sBOOM

I. Ray-tracing
2. Quasi-ID, augmented Burgers' equation

(20II) Rallabhandi, "Advanced Sonic Boom Prediction Using the Augmented Burgers Equation"J.Aircraft
(I99I) Shepherd \& Sullivan, "A Loudness Calculation Procedure Applied to Shaped Sonic Booms"

AtMospheric Propagation with sboom

- Discretization error

Finite difference solution of PDE on uniform grid

- Input error

Input ~ 100X coarser than output Oversampling introduces high freq.

- Mesh refinement studies

Numerical sources of error $\boldsymbol{\sim} \mathbf{0}$. IdB (cf. atmospheric variability of $\sim 5 \mathrm{~dB}$) But not clearly asymptotic

Nearfield + Propagation

Perceived loudness (PLdB)

from $r / L=5$ on fine CFD mesh

Case	$\Phi=0^{\circ}$	$\Phi=10^{\circ}$	$\Phi=20^{\circ}$	$\Phi=30^{\circ}$	$\Phi=40^{\circ}$	$\Phi=50^{\circ}$
AXIE	78.1	-	-	-	-	-
JWB	79.5	76.5	78.2	$\mathbf{8 2 . 2}$	81.6	76.6
C25F	78.1	80.4	80.1	$\mathbf{8 2 . 2}$	80.1	73.3
C25P	80.4	81.3	78.3	$\mathbf{8 1 . 4}$	78.7	73.3

CFD Mesh Convergence of Loudness

Perceived loudness (PLdB) from $r / L=5$ on fine CFD mesh

- Δ PLdB from coarse

 to fine CFD mesh| Case | $\Phi=0^{\circ}$ | $\Phi=10^{\circ}$ | $\Phi=20^{\circ}$ | $\Phi=30^{\circ}$ | $\Phi=40^{\circ}$ | $\Phi=50^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AXIE | 78.1 (v0.4) | - | - | - | - | |
| Jwb | 79.5 ($\mathbf{v} 0.6$) | 76.5 (v0.7) | 78.2 ($\mathbf{V} 0.4$) | 82.2 (1.5) | 81.6 (v0.1) | 76.6 ($\mathbf{(0 . 5)}$ |
| C25F | 78.1 ($\mathbf{\Delta} 0.8$) | 80.4 ($\mathbf{0} 0.6$) | | 82.2 (\triangle 0.8) | 80.1 ($\mathbf{(0 . 6)}$ | 73.3 (0.0) |
| C25P | 80.4 (\downarrow 0.5) | 81.3 ($\vee 0.5)$ | 78.3 (\vee 0.3) | 81.4 (\vee 0.6) | 78.7 (\vee 0.4) | 73.3 (1.6) |

- Typically <IdB change from coarse to fine CFD mesh (max 1.6 dB)
- But - do not demonstrate asymptotic convergence.

PROPAGATION WORKSHOP CASES

AXIE

LM-102I

$$
\text { Lref }=43 \mathrm{~m}(14 \mid \mathrm{ft})
$$

Conditions:

$$
M_{\infty}=1.6
$$

Altitude $=15.8 \mathrm{~km}(\sim 52 \mathrm{~K} \mathrm{ft})$

Profiles:

- ISO Standard Atmosphere
- ISO Std. Atm. with 70\% humidity
- Hot day, coastal Virginia
- Hot dry day, Edwards AFB

Conditions:

Wind tunnel model from SBPWI (2014)

$$
M_{\infty}=1.6
$$

$$
\text { Lref }=71 \mathrm{~m}(233 \mathrm{ft})
$$

Altitude $=16.7 \mathrm{~km}(\sim 55 \mathrm{~K} \mathrm{ft})$

Profiles:

- ISO Standard Atmosphere
- ISO Std. Atm. with 70\% humidity
- 2 consecutive winter days in Green Bay, WI

BOOM FOOTPRINT

Cutoff Angles

Limiting Ray

Track Width

AXIE	Cutoff		Track Width
Std. Atm	$\pm 50^{\circ}$	69 km	
Atm \# 3	-53°	50°	85 km
Atm \# 4	-44°	47°	72 km

LM-102 I			
Cutoff		Track Width	
Std. Atm	$\pm 50^{\circ}$		71 km
Atm \# 1	$\mathbf{- 7 4}$	57°	87 km
Atm \# 2	-59°	65°	$\mathbf{1 1 1} \mathbf{~ k m}$

LOUDNESS

AXIE LM-I02I

HIGHLIGHTS

Nearfield with Cart3D

- Improved efficiency - off-track angles on parallel meshes, azimuthal alignment, stretching

Propagation with sBOOM

- Major atmospheric variability: 2-5 dB typical, $10-20 \mathrm{~dB}$ in extreme cases.
- With cross-wind, up to 75° off-track can hit ground and track widths widen by 50%

NASA
 Questions?

George R. Anderson

 Science \& Technology Corp. george.anderson@nasa.govMichael J. Aftosmis NASA Ames
michael.aftosmis@nasa.gov

Marian Nemec
NASA Ames
marian.nemec@nasa.gov

NASA Ames Computational Aerosciences Branch Supported by NASA ARMD CST Project

[^0]: Mach 1.6
 $\alpha=3.375^{\circ}$
 Computed $\mathrm{C}_{\mathrm{L}} \approx 0.068$

