CART3D SIMULATIONS FOR THE 2ND AIAA SONIC BOOM PREDICTION WORKSHOP

George R. Anderson Science & Technology Corp.

Michael J. Aftosmis NASA Ames Marian Nemec NASA Ames

NASA ARC — Moffett Field, CA Computational Aerosciences Branch

> AIAA PAPER 2017-3255 Monday, 5 June 2017 AIAA Aviation Conference Denver

MOTIVATION

- Commercial supersonic flight banned over the US because of objectionable sonic boom
- Hope to overturn this with demonstrably quiet aircraft (e.g. QueSST)
- CFD tools are a major contributor to design efforts
- Sonic Boom Prediction Workshops
 - (2008) NASA FAP SBPW
 - (2014) AIAA SBPW1
 - ⇒ (2017) AIAA SBPW2

Sonic Boom Physics

GRA

Nearfield Workshop

- Propagation Workshop
- Conclusions

AIAA PAPER 2017-3255

Cart3D Simulations for the Second AIAA Sonic Boom Prediction Workshop

George R. Anderson^{*} Science and Technology Corporation, Meffett Field, CA 94035 Michael J. Aftosmis[†] and Marian Nemec[‡] NASA Ames Research Center, Maffett Field, CA 94035

Simulation results are presented for all test cases prescribed in the Second AIAA Sonic Boom Prediction Workshop. For each of the four nearfield test cases, we compute pressure signature at specified distances and off-track angles, using an invisical, embedded-boundary Cartesian-mesh flow solver with output-based mesh adaptation. The cases range in complexity from an axisymmetric body to a full low-boom aircraft condiguration with a powered density from an axisymmetric body to a full low-boom aircraft condiguration with a powered end off-track angle is computed on a mesh with good azimuthal alignment, higher aspect ratio cells, and more tailored adaptation. The nearfield signatures generally exhibit good convergence with mesh refinement. We introduce a local error estimation procedure to highlight regions of the signatures most sensitive to mesh refinement. Results are also pretioned for two propagation test cases, which investigate the effects of atmospheric profiles on ground noise. Propagation is handled with an augmented Win ZASB.

Nomenclature

A_{ref}	Reference area	Φ	Off-track/Azimuthal angle				
$C_{D/L}$ C_p	/M Drag/lift/pitching moment coefficients Local pressure coefficient	Subscripts					
e	Integrated signature differences	(·)∞	Freestream value				
E	Local error estimate	(·)t	Stagnation value				
J	Aerodynamic output functional	(·)c	Coarse				
l	Distance along signature	(·)t	Fine				
L	Reference length for propagation	(·)m	Medium				
M P	Mach number Static pressure	Abbrevia	ations				
P	Order of convergence	ASEL/CS	SEL A-/C-weighted sound exposure level				
r	Distance from flight path	AXIE	Axisymmetric body (Case I)				
T	Temperature	AXIE-PROP Axisymmetric body (Prop. Case I)					
w	Weight in functional	C25F	C25D with flow-through nacelle (Case III)				
α	Angle of attack	C25P	C25D with powered nacelle (Case IV)				
β	$\sqrt{M_{\infty}^2 - 1}$	JWB	JAXA wing-body (Case II)				
θ	Offset angle to avoid sonic glitch	LCASB	Loudness Code for Asymmetric Sonic Booms				
μ	Mach angle = $\sin^{-1}(1/M_{\infty})$	LM-1021	Lockheed Martin 1021 (Prop. Case II)				
ρ	Density	PL	Perceived level of noise				
τ	Normalized x-distance from nose Mach cone	SBPW	Sonic Boom Prediction Workshop				
*A *A *A	*Arenapase Baginer, Computational Aerosciences Branch, george.andereonBrana.gov. Member AIAA, *Arenapase Baginer, Computational Aerosciences Branch, michael.andenni@Brana, gov. Associate Fellow AIAA, *Aerospace Baginer, Computational Aerosciences Branch, marian.neme@Baaa.gov. Member AIAA.						
	1 of 25						
	American Institute of Aeronautics and Astronautics						

ALL REQUIRED AND OPTIONAL CASES FROM BOTH WORKSHOPS

• Nearfield Workshop — Cart3D

- **Meshing approach** Alignment + Adaptation
- **Boom Carpets** Azimuthal Alignment
- **Results** for Cases I, II, IV
- Local Error Analysis
- Propagation Workshop
- Conclusions

SUBMITTED:

- All 4 cases, all azimuths, 3 mesh refinement levels
- Propagated signals and loudness metrics

CFD and Meshing

Flow Solver — Cart3D v1.5

- Steady, inviscid flow
- 2nd-order upwind method
- Multigrid acceleration
- Domain decomposition highly scalable

Automatic Meshing

GRA

- Multilevel Cartesian mesh with embedded boundaries
- Handles arbitrarily complex vehicle shapes

Goal-Oriented Mesh Adaptation

- Mesh automatically refined in locations with most impact on signatures
- Discretization error estimates computed via adjoint method

8

MESH CONVERGENCE GUIDELINES

- Submit **"coarse"**, **"medium"**, **"fine"** mesh solutions
 - Quantitative guideline:
 Asymptotic convergence of
 pressure functionals
 - Qualitative guidelines:
 Consistent signal features over consecutive meshes

OFF-TRACK SIGNATURES

OFF-TRACK SIGNATURES

- Straightforward approach compute all sensors with a single mesh
- With Cartesian-aligned grids, off-track angles are misaligned, constraining aspect ratio and leading to high cell-counts.

Mesh Splitting

MESH SPLITTING

- Can run off-track angles in parallel 6 compute nodes
- Scriptable [new Cart3D scripts available]

JAXA WING-BODY (JWB)

Mach I.6 $\alpha = 2.3067^{\circ}$ Computed **C**_L ≈ 0.077

GRA

On track

6 Adapted Meshes

IWB ---- FLOW

- 30-33M cells each
- Solved in parallel on six 28-core Broadwell nodes
- 2hr30min wall-clock time (flow solution + all meshing, adjoint solutions, error estimation, etc.)

Ø II AOo

JWB — FINE MESH SIGNATURES

18

5 JUNE 2017

CONCEPT 25D (Government Reference Vehicle!)

C25F

Re-contoured fuselage and tail bulb

Plug nozzle _

С25р 🭕

Mach I.6 $\alpha = 3.375^{\circ}$ Computed **C_L** \approx 0.068

CART3D SIMULATIONS FOR THE 2ND AIAA SONIC BOOM PREDICTION WORKSHOP

5 JUNE 2017

Inlet Conditions

 $\frac{p}{p_{\infty}} = 3.26$

Plenum Conditions $\frac{p_t}{p_{\infty}} = 14.54$ $\frac{T_t}{T_{\infty}} = 7.87$

Plume is more expensive

- Vehicle is effectively longer
- Plume evolves with mesh

Each off-track angle — 35M cells — 4hr 30min on 28 cores Includes flow solution + all meshing, adjoint solutions, error estimation, etc.

C25P — SIGNATURES

GRA

Local error estimates via extrapolation See AIAA Paper 2017-3255 for details

OUTLINE

- ✓ Nearfield Workshop
 - Propagation Workshop sBOOM
 - Numerical approach
 - Propagation Results:
 - Nearfield workshop signatures
 - Propagation workshop signatures
- Conclusions

Atmospheric Propagation with sBOOM

Atmospheric Propagation with sBOOM

Discretization error

Finite difference solution of PDE on uniform grid

Input error

GRA

Input ~100X coarser than output Oversampling introduces high freq.

Mesh refinement studies

Numerical sources of error ~0.1dB (cf. atmospheric variability of ~5 dB) But not clearly asymptotic

Perceived loudness (PLdB)

from r/L=5 on fine CFD mesh

Case	$\Phi = 0^{\circ}$	$\Phi = 10^{\circ}$	$\Phi = 20^{\circ}$	$\Phi = 30^{\circ}$	$\Phi = 40^{\circ}$	$\Phi = 50^{\circ}$
AXIE	78.1	_			_	
JWB	79.5	76.5	78.2	82.2	81.6	76.6
C25F	78.1	80.4	80.1	82.2	80.1	73.3
C25P	80.4	81.3	78.3	81.4	78.7	73.3

CFD MESH CONVERGENCE OF LOUDNESS

Perceived loudness (PLdB) from r/L=5 on fine CFD mesh			 Δ PLdB from coarse to fine CFD mesh 			
Case	$\Phi = 0^{\circ}$	$\Phi = 10^{\circ}$	$\Phi = 20^{\circ}$	$\Phi = 30^{\circ}$	$\Phi = 40^{\circ}$	$\Phi = 50^{\circ}$
AXIE	78.1 (0.4)			_	_	
JWB	79.5 (▼ 0.6)	76.5~(-0.7)	78.2~(-0.4)	82.2 (▼1.5)	81.6 (v 0.1)	76.6 (10.5)
C25F	78.1 (▲0.8)	80.4 (10.6)	80.1 (.1)	82.2 (▲0.8)	80.1 (10.6)	73.3(0.0)
C25P	80.4 (•0.5)	81.3 (•0.5)	78.3 (•0.3)	81.4 (▼0.6)	78.7 (•0.4)	73.3 (1.6)

- Typically < I dB change from coarse to fine CFD mesh (max 1.6 dB)</p>
- ▶ But do **not** demonstrate asymptotic convergence.

PROPAGATION WORKSHOP CASES

AXIE

Lref = 43m (141 ft)

Conditions:

 $M_{\infty} = 1.6$

Altitude = $15.8 \text{ km} (\sim 52 \text{ K ft})$

Profiles:

- ISO Standard Atmosphere
- ISO Std. Atm. with 70% humidity
- Hot day, coastal Virginia
- Hot dry day, Edwards AFB

Conditions:

 $M_{\infty} = 1.6$

LM-1021

Wind tunnel model from SBPWI (2014) Lref = 71m (233 ft)

Altitude = $16.7 \text{ km} (\sim 55 \text{ K ft})$

Profiles:

- ISO Standard Atmosphere
- ISO Std. Atm. with 70% humidity
- 2 consecutive winter days in Green Bay, WI

BOOM FOOTPRINT

AXIE	Cu	toff	Track Width	LM-1021	Cut	off	Track Width
Std. Atm	±5	0°	69 km	Std. Atm	±50°		71 km
Atm # 3	-53°	50°	85 km	Atm # 1	-74 °	57°	87 km
Atm # 4	-44°	47°	72 km	Atm # 2	-59°	65°	111 km

LOUDNESS

HIGHLIGHTS

GRA

Nearfield with Cart3D

- Improved efficiency off-track angles on parallel meshes, azimuthal alignment, stretching [new scripts for Cart3D users]
- Method for assessing local signature mesh convergence [scripts available]

Propagation with sBOOM

- Major atmospheric variability: 2-5 dB typical, 10-20 dB in extreme cases.
- With cross-wind, up to 75° off-track can hit ground and track widths widen by 50%
- Asymptotic convergence of nearfield signature does not imply same of noise

COARSE FINE

QUESTIONS?

George R. Anderson

2/2 64

Science & Technology Corp. george.anderson@nasa.gov

Michael J. Aftosmis

NASA Ames michael.aftosmis@nasa.gov

Marian Nemec NASA Ames

marian.nemec@nasa.gov

NASA Ames Computational Aerosciences Branch

Supported by NASA ARMD CST Project