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ABSTRACT

Design space dimensionality is a persistent obstacle to high-fidelity aerodynamic shape
optimization. The burden typically falls to the designer to select the shape design vari-
ables, which restricts the design space and impacts computational efficiency. In this work,
I develop a system that automatically adapts the shape parameterization to efficiently
solve the given design problem. Optimization begins with a small set of design variables,
which is then progressively refined to enable the discovery of superior designs. The adap-
tation is goal-oriented and is driven by a novel refinement indicator that focuses shape
control resolution on regions with the highest potential to improve the design. This in-
dicator is computed from adjoint sensitivity information and a quasi-Newton Hessian
approximation, which are both readily available in many design frameworks.

To verify that the system can autonomously discover parameters sufficient to solve
a problem, three inverse design problems are examined. For these cases, the procedure
robustly converges to the continuous optimum from different starting points and with
different refinement strategies. Several airfoil and wing shape optimization problems are
then performed. The adaptive approach generally yields smoother design trajectories, at
substantially lower cost than under fixed or uniformly-refined parameterizations. Finally,
I consider the combinatorial problem of finding an optimal layout for an adaptive, trailing
edge flap system. In fewer than 100 simulations, the adaptive procedure discovers a flap
layout that outperforms naive layouts. I conclude with a discussion of the tremendous
potential this approach offers for many other disciplines and design environments.

v



ACKNOWLEDGMENTS

This work is deeply indebted to:

• Mike Aftosmis, mentor, advocate, tireless and inspiring researcher, trove of id-
iomatic speech, and deeply human being.

• Antony Jameson, compassionate advisor and teacher.

• The NASA ARMD NARI Seedling Fund, lenders of critical support for this research.

• Marian Nemec and David Rodriguez, patient colleagues and co-authors.

• Bradley and Susan Anderson, progenitors extraordinaire; Elizabeth and Thomas
Anderson, siblings resplendent.

• My dearest friends: Dorian Jackman, expleter and relentless friend; Thomas Marnin,
observer of things; Alessandra Aquilanti, standpartner for life; Anna Polishchuk,
fairy friend.

• Elan Dagenais, my companion, helpmeet, and little one.

vi



NOMENCLATURE

Z — Scalar
Z — Vector
Z — Matrix
Z — Continuous surface vector
Z — Function

A Area footprint of deformation mode
b Design variable bounds
B Quasi-Newton Hessian approximation
C, C Shape control description
CD/L/M Drag/lift/moment coefficient
C, C Constraint functional(s)
d Tree search depth
D Shape deformation function
DH Differential part of H
F Design functional (J or C)
g Growth rate in NDV
h Height of deformation mode
H/H Objective Hessian matrix/operator
I/I Identity matrix/operator
I Importance indicator
J Objective functional
K Static part of H
M Hessian prolongation scale term
N(·) Number of (·)
O Asymptotic complexity
P Shape parameterization function
r Slope reduction factor for trigger
S Shape
S Discrete surface
w Window
X, X Design variable value(s)
a Angle of attack
l Lagrange multipliers

Q Operating conditions
yo/yj Adjoint solutions (objective/constraints)

Subscripts

(·)i Design iteration
(·)? Optimal design
(·)G First-order (gradients only)
(·)H Second-order (Hessian)
(·)D Second-order, diagonal only

Superscripts

(·)a Active constraints
(·)c Candidate shape control
(·)k Shape parameterization level
(·)• Continuous shape control
(·)⇥ Static shape control
(·)⇤ Target value
(·)�C No constraints
(·)⇢H Ignoring Hessian

Abbreviations

BFGS Broyden-Fletcher-Goldfarb-Shanno
CAD Computer-aided design
DV Design variable
GSM Geometric shape matching
KKT Karush-Kuhn-Tucker conditions
OSD Optimal shape design
RBF Radial basis function
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CHAPTER 1

INTRODUCTION

Modern engineering design increasingly employs numerical optimization, which aims to
find the best design for a given set of requirements. In aerodynamic design endeavors,
this usually involves optimizing a surface, whose shape directly determines its perfor-
mance. The full shape optimization problem is continuous, usually without an analytic
solution, and is solved numerically by projecting it into a finite set of design variables
via parameterization of the shape modifications. This choice of design variables impacts
the robustness, completeness and efficiency of the subsequent optimization. In standard
approaches, whether the parameterization is specified by the designer or automatically
generated, it remains fixed throughout optimization. This work examines automating the
construction and refinement of the shape parameterization, resulting in a substantially
more autonomous, robust, and efficient design system.

1.1 Motivation

Optimal Shape Design (OSD) is typically phrased as finding the shape that maximizes some
measure of performance. In most design settings, however, OSD is used with somewhat
less ambitious, more practical goals in mind:

1. Maximally improving the performance of a design within limited resources.

2. Deepening the designer’s understanding of the design space.

1



2 CHAPTER 1. INTRODUCTION

The shape parameterization is intimately intertwined with each of these goals. Consider
the first goal. Except for certain academic cases, a designer rarely expects to find the true
continuously optimal shape. Instead, a finite approximation of the problem is created
via selection of a set of design variables. The credibility of the resulting pseudo-optimal
shape is uncertain. At the end of optimization, there is no indication of how much more
performance might be attainable if other degrees of freedom were used.

The computational efficiency of this process is also suspect. The rate of design improve-
ment per simulation depends on two competing factors. To achieve better designs, more
flexibility must be added. However, as the dimensionality increases, the search space gener-
ally becomes more costly to navigate. Either extreme (too few or too many design variables)
can lead to sluggish design improvement. Historically, this has led researchers to develop
a spectrum of optimization approaches, from rapid, low-dimensional explorations (e.g.
[1–4]) to high-dimensional approaches that approximate the continuous problem by brute
force (e.g. [5, 6]). In virtually all approaches, the choice of shape control resolution (and
perhaps distribution) is relegated to the designer, who must strike a compromise between
capacity for overall design improvement and speed.

A key observation of this thesis is that this tradeoff between completeness and efficiency
is an artificial conflict arising from the use of static parameterizations. This thesis devel-
ops a progressive approach to parameterization, where the spectrum of dimensionality is
automatically traversed. In addition to enabling rapid design improvement early in opti-
mization, this approach is convergent to the continuous locally optimal shape, not merely
to some finite approximation. It also removes the need for user-in-the-loop reparameteriza-
tion, and it helps reduce the dependence of the final result on the designer’s skill at crafting
a parameterization.

Now consider Goal (2). All-encompassing, fully-automated aircraft design systems are
a lofty but distant dream. Instead, OSD is viewed more as a tool for helping the designer
better comprehend the design space. As a goal-oriented process, OSD can typically uncover
non-obvious trends much more rapidly than impartial parametric studies. In pursuit of
comprehensible feedback, many designers constrain the design space through the use of
“intuitive” design variables. By exercising meticulous control over the parameterization,
they frame the problem such that the results are more relatable to previous experience.

The obvious criticism of this approach is that it biases the optimization and exacerbates
the tendency to produce familiar but suboptimal designs. This is only partially a fair
criticism. Any given distribution of design variables does arbitrarily restrict the optimization.
Nevertheless, it can be highly fruitful to restrict optimization to a certain intuitive shape
control class. This system developed in this thesis allows the designer to specify a basis for



1.2. BACKGROUND 3

shape modifications, while the actual construction and refinement of the design variables
within that basis is automated. This preserves the comprehensibility of the results, while
alleviating the bias and restrictions of choosing an arbitrary set of design variables.

Beyond merely controlling the dimension of the search space, I also examine localized,
adaptive refinement of the search space. I show that sufficient information can be extracted
during optimization to enable an autonomous system to intelligently enrich the shape
parameterization and improve its spatial distribution. This has the potential to achieve
faster and more robust design improvement compared to “obvious”, but non-expert-crafted
parameterizations. Moreover, it provides yet more feedback in the form of the refinement
pattern. Ultimately, the hope is to approach (or perhaps surpass) expert performance with
an automated system. Like any automated system, however, the goal of this approach is
primarily to make OSD simpler, more robust, and more informative.

1.2 Background

This work focuses on detailed, high-fidelity parametric shape optimization. As one impor-
tant goal is to support convergence to the continuously optimal shape, which necessarily
ultimately requires very high-dimensional search spaces, I will make use of gradient-based
methods and adjoint approaches. Optimization will generally be driven by high-fidelity
simulations, or with variable fidelity simulations to save cost. The primary thrust of the
thesis is related to controlling the resolution and distribution of shape control, which will
motivate the use of adaptive, progressive parameterization. An important goal of the im-
plementation is to support a wide variety of design frameworks, simulation tools, and
geometry modelers. Therefore, I will aim to minimize modifications to existing design
codes. The following sections review the various components of this approach, as well as
some alternatives.

1.2.1 Parametric Shape Optimization

From the earliest days [7], the most prevalent approaches to OSD have been “parametric”,
i.e. involving higher level shape parameters, often ones that are intuitive to designers.
By decoupling the shape control from the simulation meshes, parametric approaches can
simplify the development of modular optimization architectures. Shape manipulation is
performed by a geometry modeler, which provides the optimizer with a set of adjustable
shape parameters to be used as design variables. During optimization, the geometry mod-
eler interprets each requested set of parameter values and instantiates a fully-realized
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surface geometry that is appropriate for high-fidelity analysis. Examples of geometry
modelers include CAD systems [8], parametric constructive solid modelers like EGADS [9]
and OpenCSM [10], aerospace-focused modelers such as RAGE [11], OpenVSP [12], and
MICADO [13], plus innumerable in-house codes. These tools are built upon libraries of
low-level shape constructors (e.g. polynomials and splines), boolean operations, and defor-
mation techniques (e.g. lattices, bump functions).

A major drawback to parametric design is that it introduces additional user decisions:
how to construct the shape parameters, how many variables to use, and where to place
them. This process can be labor intensive, involving trial-and-error predictions of the
degrees of freedom that most efficiently span the relevant region of the design space. Man-
ually constructed parameterizations permit only limited improvement, and the final result
is sensitive to the initial choice of design variables. The designer must therefore frequently
manually re-parameterize the shape, either by naive uniform refinement [14–16] or by
selective refinement that reflects emerging knowledge about the problem [17]. This is a
difficult task, because there is no direct indication of how best to redirect optimization
effort to further improve the design. This work aims to automate this process of construct-
ing a shape parameterization, while remaining within the paradigm of parametric design.
To allow the designer to specify custom shape control bases, I aim to keep the system as
“modeler-agnostic” as possible.

1.2.2 The Adjoint Method

The demonstrations in this work will involve aerodynamic design subject to the inviscid
flow equations, although the arguments and framework apply equally to other disciplines.
In this context, adjoint-derived objective and constraint gradients are essential for efficiency.
The adjoint approach removes the need for finite-differenced flow solutions. The sensitivity
of the design functionals to the continuous surface is obtainable for the cost of only one
additional linear PDE solution per functional.

Stemming from early theoretical works in optimal control [18, 19], adjoint methods are
now widely used in fields as disparate as meteorology [20], geophysics [21], environmental
monitoring [22], computer graphics [23, 24], and finance [25]. Pironneau first investigated
optimal shape design with respect to Stokes flow [26], Navier-Stokes flow [27] and el-
liptic systems [28]. Other early applications of the adjoint approach involved structural
sizing optimization (e.g. [29]). Jameson applied the technique to Euler and Navier-Stokes
flow conditions, and demonstrated the tremendously reduced cost of aerodynamic shape
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optimization [30, 31], initiating an extremely productive period of research in shape de-
sign techniques (see e.g. [32]). The adjoint approach led to the development of efficient,
monolithic one-shot methods [33–35], in which all the subcomponents of the optimization
loop are tightly coupled. It also dramatically accelerated parametric shape optimization
approaches, which previously had been severely limited in scope by the cost of finite-
differenced gradients. Under the adjoint approach, arbitrary numbers of design variables
can be used, with negligible increase in cost. Adjoint solvers are now a standard component
of many aerodynamic design codes in research and industry, where they enable efficient
gradient-based shape optimization with large numbers of design variables both for purely
aerodynamic [36, 37] and for multidisciplinary problems [38]. Adjoint methods are also
used to compute estimates of discretization error and to drive goal-oriented adaptive mesh
refinement [39].

Although not previously used in this manner, the adjoint can be leveraged to guide
the construction of efficient search spaces for optimization. In typical parametric shape
optimization, only a small subset of all the sensitivity information encoded in the adjoint
solution is used. In Chapter 3, I show how to use adjoint solutions in a novel manner to
compare hypothetical shape parameters and determine the most important ones to solve
the given problem. This enables automatic adaptation of the shape control to target the
particular goals of the optimization.

1.2.3 Optimization Approaches

As the goal is to perform shape optimization driven by expensive simulations and in search
spaces of arbitrarily high dimension (approaching continuous), it is essential to minimize
the number of functional evaluations. Therefore for this work I use a gradient-based ap-
proach, which is dramatically more efficient than gradient-free approaches, at least for
smooth problems. For popular gradient-based approaches (e.g. BFGS), the number of simu-
lations required for optimization is formally linearly proportional to the number of design
variables [40, 41]. Gradient-free methods perform much worse (see e.g. [42, 43]) and are
not generally recommended for high-dimensional optimization [44]. A consequence of
using gradient-based optimization is that the approach developed here guarantees only
local optimality for non-convex design spaces.

This work focuses on reduced-space, quasi-Newton optimization — perhaps the most
widely used approach in gradient-based aerodynamic design. One reason for the broad up-
take of quasi-Newton approaches is the availability of many black-box optimizers, which
makes the simulation tools more interchangeable. Other gradient-based approaches to
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optimization include full-space methods [45] and inexact Newton methods [46], each with
particular advantages. Because these approaches involve substantial invasive modifica-
tion of simulation tools, I do not consider them in this work. However, Chapter 7 briefly
discusses how adaptive parameterization might still be useful in those settings.

1.2.4 Order Reduction

The number of degrees of freedom in the parameterization and their distribution directly
dictate the best achievable design. Although this has long been recognized (e.g. [33]), it
is unfortunately frequently ignored in applied design settings, though for understandable
reasons. In analysis, accurate analysis or quantification of error in an aerospace vehicle’s
performance may quite literally be a matter of life and death. In optimization, there is
less impetus for accuracy; any design improvement is valuable, and it is not usually crit-
ical that the final result be optimal in a global, continuous sense. Nevertheless, there has
recently accrued a substantial body of studies examining the dependence of the final de-
sign’s performance (and the optimization efficiency) on both the number of degrees of
freedom [4, 46–56]1 and (less commonly) the shape control distribution [5, 47, 58]. These
studies are primarily concerned with empirical trends. Direct estimation of the degree
of suboptimality appears to be confined to simpler model PDES (especially elliptic prob-
lems [59, 60]).

The goal of order-reduction is to reduce the cost of optimization, while retaining the
ability to gain the majority of the possible design improvement. Many approaches to order-
reduction are guided by a preliminary analysis of a sampling of the design space. Examples
include proper orthogonal decomposition [61, 62], principal components analysis [63], or
active subspaces [2]. In these approaches, a higher-dimensional search space is sampled,
from which a lower-dimensional manifold is extracted, accounting for the majority of the
variation in the design space. In tandem with surrogate models (e.g. [2, 64–67]), these
approaches can be effective at capturing low-order trends. However, their cost rapidly
balloons for high-dimensional design, making them inappropriate in the context of seeking
a continuous optimum. In this work, we are seeking a procedure that is both efficient and
able to converge to a continuous optimal solution.

1Also in other fields, such as computer graphics [57].
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1.2.5 Progressive Parameterization
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Figure 1.1: Notional parameterization refinement for
wing design.

This work adopts a progressive pa-
rameterization approach, where opti-
mization begins in a low-dimensional
search space. As the design evolves,
higher-resolution shape control is grad-
ually added, as illustrated in Fig-
ure 1.1. The basic idea is inspired
by h-refinement in multilevel methods.
Rapid design improvement is encour-
aged by using compact search spaces
early on; the search space is then en-
riched only when necessary to further
improve the design, and if resources
permit. In the limit of shape control
refinement, the full, continuous de-
sign space becomes available for explo-
ration. In contrast to a static parame-
terization approach, which strikes a compromises between efficiency and completeness, a
progressive approach constitutes a single design process that drives the shape towards a
local optimum of the continuous problem, while still retaining efficiency. Additionally, this
approach ensures that the final optimized shape depends only on the problem specification,
while being robust with respect to the initial shape parameterization.2

Progressive shape parameterization has its deepest roots in structural optimization.
Early work focused on adaptation of the solution grid to accelerate optimization [68–70]
but soon also considered refinement of the parameterization [71]. The first multilevel
parameterization technique for aerodynamic shape optimization was developed at INRIA
in 1993 by Marco, Beux, and Dervieux [72, 73]. A series of subsequent papers from the
same group demonstrated that substantial design acceleration can be achieved with nested
Bézier curves or free-form deformation [47, 74–79]. Multiresolution subdivision surfaces
have also been used for progressive parameterization [80]. Coarse-to-fine sequencing is
also a very natural technique even for designer-in-the-loop approaches [14–16].

Hwang and Martins developed a progressive approach where Hessian information is
exactly transferred when refining the parameterization, which avoids repeating the initial

2The presence of local optima can affect this.
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Hessian build-up time at each transition [81]. However, to do so, they require that the
finest parameterization be provided a priori. Although they likewise observe computa-
tional acceleration over uniform refinement, many of the other advantages of progressive
parameterization are lost. The designer must construct the finest permissible parameteriza-
tion, which limits the ability to approach the continuous problem. Second, the number of
shape sensitivity computations and gradient projections is always high, which can increase
wall-clock time and storage requirements for very large numbers of design variables.

Sequencing and Multigrid

Multilevel shape optimization is closely related to work on multilevel PDE solution tech-
niques. Certain authors argue that optimization is inherently an “anti-smoothing” pro-
cess [82] and that design space sequencing is analogous to preconditioning the optimiza-
tion [48, 76]. Making an analogy to grid sequencing and multi-grid techniques in PDE

solutions, they find that a sequence of refined design spaces performs substantially better
than a fine, fixed parameterization [48, 79].

Multilevel optimization can be performed either using a straightforward sequencing
approach (which I use in this work) or using a more involved multigrid algorithm. Results
are inconclusive on whether a more involved multigrid parameterization approach is ap-
preciably faster than sequencing [48, 78, 83], although results for simpler model PDES are
promising [84, 85].

1.2.6 Adaptive Refinement

Most research on progressive parameterization involves a simple predetermined sequence
of parameterizations, with uniformly distributed shape control. The results universally
show design acceleration, which strongly justifies the use of parameterization sequencing
for optimization. A much smaller number of groups have investigated adaptive refinement,
where the goal is to achieve a more optimal distribution of the shape control. Adaptive re-
finement seeks to add only the most important design variables to solve the given problem,
thus reducing the overall dimension of the search. It is conjectured that this should acceler-
ate quasi-Newton (and slower) optimization approaches, which generally converge faster
with fewer degrees of freedom, so long as those degrees of freedom have high potential.
There have been various approaches to adaptive shape control refinement, but moderate
additional reduction in computational cost is typically observed [47, 50, 75, 77, 79, 81, 86].
More detail on these approaches will be given in Chapter 3.
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Refinement vs. Redistribution

An important alternative (or supplement) to progressive refinement is to seek a better
distribution of the existing shape control, which I will call “r-refinement” by analogy to
adaptive meshing. The results in [77] suggest that redistribution can be more effective than
naive enrichment. However, as demonstrated in [58], making this approach goal-oriented
requires tedious and extensive differentiation of the parameterization function itself (not
just the deformation function), which may not be feasible for many geometry modelers.

Regardless, under a given shape control basis, r-refinement alone is insufficient to con-
verge to the continuous optimal shape. At some point, the capacity of the fixed-dimension
search space will be exhausted, and the number of design variables must be increased to
continue design improvement.3 In this work I develop an h-refinement approach, because
it is both necessary (excluding the possibility of adapting the shape control basis itself) and
sufficient to converge to the continuous optimal shape. However, further investigation of
redistribution is certainly warranted, as it offers significant complementary potential.

1.3 Contributions

The central goal of this work is to develop a system that automatically discovers the neces-
sary shape control to solve a problem. The broad contributions of this thesis are twofold:

1. A complete system for solving aerodynamic shape optimization problems using goal-
oriented adaptive shape control, with (nearly) arbitrary geometry modelers.

2. Validation of the system on problems with known solutions, and evaluation of its
performance on practical design problems.

Taken together, these aim to establish adaptive shape control as a robust, automated, and
efficient approach to aerodynamic shape design. The major specific contributions of this
work are outlined below.

I have developed novel approaches to several independent, essential components of
any adaptive shape control system:

3Discrete surface-based deformational modelers could technically bypass this restriction, by periodically
reestablishing the current shape as the new baseline. However, even in this case, the discrepancies between
the current shape and the (unknown) optimal shape consist of higher and higher frequencies, suggesting that
redistribution of a small number of low-frequency controllers would cause the asymptotic convergence to the
continuous optimum to severely stagnate.
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1. A goal-oriented adaptation criterion based on “expected design improvement”, that
improves upon previous approaches by explicitly accounting for constraints, varia-
tion in design space curvature, and redundancy.

2. A method for estimating curvature in a hypothetical search space via prolongation of
the quasi-Newton Hessian approximation from the previous space.

3. An efficient adaptation strategy, comprised of:

• An approximate constructive algorithm for efficiently searching the combinato-
rial space of possible refinements.

• Cost-benefit approaches to automatically determine strategic moments to refine
the parameterization and tune the growth rate in the number of design variables.

Another important component of this thesis is a series of studies that verify the correct-
ness of each of the system’s components in isolation. I show that the adaptive system is
able to independently, robustly, and efficiently navigate to the continuous optimal design
from different starting points and with different refinement strategies. To my knowledge,
recovery of continuously optimal shapes with parametric shape optimization techniques
has not been previously demonstrated. In addition, I provide several design examples that
compare the efficiency of the entire integrated system to that of traditional optimization,
demonstrating major advantages to using progressive shape control.

1.4 Thesis Organization

Chapter 2 presents a basic framework for progressive shape control with discrete refine-
ment mechanics. Chapter 3 develops an approach for shape control adaptation, including
derivation of a novel goal-oriented refinement indicator and discussion of efficient adap-
tation strategies. Chapter 4 shows how the system supports nearly arbitrary geometry
modelers, but also discusses the impact those choices can have on efficiency and robust-
ness. Chapter 5 verifies the accuracy and robustness of the approach on three inverse
design problems with known answers. Chapter 6 evaluates the effectiveness of adaptive
parameterization on several more practical design examples. Though exercised here in the
narrow capacity of aerodynamic design under inviscid conditions, this approach also has
tremendous potential to accelerate and automate shape parameterization in many other
design settings. Chapter 7 discusses some of these and offers recommendations for further
investigation.



CHAPTER 2

PROGRESSIVE PARAMETERIZATION WITH

DISCRETE REFINEMENT

Consider an aerospace shape optimization problem that consists of finding a shape S and
possibly a set of variable operating conditions Q that minimize a single objective, subject
to design constraints:

min
S,Q

J (S, Q) (2.1)

s.t. a  Cj(S, Q)  b

where J and Cj are scalar functionals that aggregate performance metrics such as lift, drag,
static margin, maneuver loads, or wing volume, or more specialized concerns such as reduc-
ing sonic boom ground signatures. The functionals may involve integration over multiple
flight conditions (multipoint design), which also means that Equation (2.1) encompasses
certain probabilistic or robust optimization approaches [87, 88].

This work considers design only of the external, aerodynamically exposed surface. The
term “shape” therefore denotes the external surface. However, the approach developed
here would be equally applicable to aerostructural design, where the shape description
might include internal geometry, such as spars and ribs.

The values of J and Cj (collectively Fj) are ultimately determined by the shape and de-
sign conditions, either explicitly or implicitly via the state variables Q, i.e. F (S, Q, Q(S, Q)).

11
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For gradient-based optimization, the derivatives of each output functional must be com-
puted with respect to the shape and variable design conditions. In the case of aerodynamic
functionals, these gradients are most efficiently computed using an adjoint approach.

2.1 Shape Parameterization

The variable operating conditions Q typically comprise a small discrete set of design vari-
ables (e.g. Mach number, altitude, trim or throttle settings, or angle of attack). However,
the shape S is continuous, and so the full design space is infinitely dimensional. To re-
duce the search space to a manageable dimension, the surface modifications are usually
parameterized.

A shape parameterization technique P is a map from a vector C describing the shape
control to a deformation1 function D(X):

(Parameterize) P : C, S0 ! D(X) (2.2)

The shape parameters X, or a subset thereof, serve as the design variables2, which define
the search space for optimization. During optimization, the deformation function takes the
design variable values and generates a new surface:

(Deform) D : X! S (2.3)

The range of D is the set of all reachable shapes, which is a subset of the continuous shape
design space. The local linearization of D about the current shape provides the shape
derivatives ∂S

∂X , which describe the deformation mode of each parameter. These shape
derivatives are used in gradient-based optimization, allowing projection of the adjoint-
derived functional gradients with respect to the surface, ∂F

∂S , into the lower-dimensional
search space spanned by the shape parameters.

In standard design frameworks, D represents a call to an automated geometry modeling
tool, while P is usually a manual pre-processing step.3 In this work, P must now be
automated as well; the geometry modeler must be able to automatically re-parameterize
the deformations.

1In this work I happen to use shape deformation techniques, where modifications of an existing surface are
parameterized, but this discussion is also fully applicable to constructive (CAD-like) modeling paradigms.

2X are often called “control variables” in the literature on PDE-constrained optimization. This should not
be confused with the term “shape control”, used here to indicate where the shape can be controlled.

3In practice, these two steps may be combined into a single function call D(C,S0, X), where it is understood
that only X is modified during optimization.
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The difference between the shape control C and the shape parameters X is a subtle distinc-
tion that becomes important only in the context of progressive parameterization [58, 77, 86].
To help make this distinction more concrete, consider the following example.
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Figure 2.1: Wing planform parameterization

Example: Wing Planform Design
Figure 2.1 illustrates a wing planform param-
eterization scheme where twist, sweep and
chord are interpolated between spanwise sta-
tions (blue lines). The shape control C is a vec-
tor of spanwise coordinates of the control sta-
tions, indicating where twist, sweep and chord
can be manipulated. The parameterization
function Pwing expands this compact, high-
level description into precise descriptions of
the deformation modes. These are encoded in
the deformation function D, which takes the
twist, sweep and chord values X and generates
a new surface. To refine the shape control, new
spanwise stations are added, introducing new
degrees of freedom.

In the example above, each deformation mode shape is determined not only its location
Ci, but also by the locations of the neighboring stations, Ci+1 and Ci�1, which also affect
the interpolation. In this and many other situations, there is not a one-to-one correspon-
dence between the shape control and the shape parameters. This point will be important
throughout this work.

2.1.1 Static vs. Progressive Shape Control

In standard shape optimization approaches, the shape control C⇥ is pre-determined by the
designer and remains static, unless the designer manually reparameterizes the shape. Op-
timization takes place in a fixed search space D⇥(X⇥), which may be more or less effective
at improving the objective function, due to the unavoidable tradeoff between completeness
and efficiency. The space of all reachable shapes is prescribed before each optimization
begins, which can needlessly prevent the discovery of superior designs outside this enve-
lope. The designer strives to find an optimal balance in the number of design variables.
As shown in Figure 2.2 (and widely observed [5, 48, 55, 78]), finer parameterizations can
reach superior designs but take longer to converge. Even with a quasi-Newton approach,
the optimization requires O (NDV) design iterations to converge [40, 41]. In practice, a
designer may need to manually refine the parameterization — a time-consuming task.
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Figure 2.2: Static parameterizations compromise
between efficiency and performance of the opti-
mal design. A progressive parameterization ap-
proach dynamically controls NDV ,allowing the
process make rapid gains early, while approach-
ing the continuous optimal shape. The goal is to
follow the “inside track”, notionally illustrated by
the green arrow. Data corresponds to a geometric
shape matching optimization.

A progressive approach instead uses a
sequence of shape control C0, C1, C2 . . . that
permits ever more detailed design. The
most important characteristic of this ap-
proach is that low-frequency deformations
are handled first, and higher-frequency de-
formations are handled later, if necessary.
From experience with multilevel methods,
we would expect this approach to have
several characteristics. First, it should ac-
celerate the optimization and smooth the
design trajectory. Each level is initialized
much closer to the optimum than would
be the case under a static parameteriza-
tion, which would be expected to improve
robustness by preventing high-frequency
deformations until they are needed. Sec-
ond, multilevel optimization constitutes a
form of smoothing [79], which should alle-
viate the need for the type of direct gradient
smoothing (or equivalently, modification of the definition of the inner product [30]) that is
usually mandatory with high-resolution shape control.4 Third, for under-constrained prob-
lems with infinite optima, such as inviscid airfoil design at low transonic Mach numbers,
this approach regularizes the problem, making it well-posed during the early levels. This
can be a convenient alternative or supplement to Tikhonov (L2) regularization or “homo-
topy”, whose weight must be carefully tuned or iteratively reduced to avoid overwhelming
the actual objective function [46, 89, 90].

In my approach, the designer still establishes one or more shape control bases that
describe allowable classes of deformation, and provides a parameterization function P for
each basis. However, construction of the actual shape control distribution C is automated.
Starting from a coarse search space C0, the shape control is periodically refined, allowing
optimization to continue in ever-higher-dimensional search spaces. In this work I do not
consider removing parameters from the optimization. While it is certainly true that a
parameter’s potential may be exhausted in its initial context, it may become important

4Some degree of gradient smoothing may still be appropriate, especially as the resolution increases. How-
ever, the robustness of the optimization should be substantially less dependent on smoothing.
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again as more degrees of freedom are added. Moreover, removing ineffective parameters is
related to r-refinement, which can lead to stagnant convergence to the continuous optimum
(cf. Footnote 3 in Chapter 1).

2.1.2 Design Spaces Admitting Progressive Parameterization

Let J k
? indicate the best attainable objective value in search space k, and let J •

? indicate the
best attainable design in the continuous space. In general, we expect higher-dimensional
search spaces to contain superior designs, i.e.

J k
? � J k+1

? � . . . � J •
? (2.4)

This is self-evidently true for the type of nested search spaces I am considering, where
Ck ⇢ Ck+1 [91],5 and has also been observed empirically by many authors (e.g. [49, 55, 92]).
Of course the mere fact that a search space contains a given optimal design does not imply
that the optimizer can actually navigate to that design. Navigability depends on the type of
optimizer and on the characteristics of the search space, including smoothness, convexity,
and the presence of local extrema, but this is an orthogonal concern that can be addressed
independently.

For progressive parameterization to be worthwhile, an appreciable portion of the the
total design potential should be recoverable in lower-dimensional search spaces. This leads
to a stronger statement than Equation (2.4):

J k
? � J •

? � J k+1
? � J •

? (2.5)

In other words, low-frequency shape modifications should have the largest impact on the
design goals, and the influence should decay at high frequencies. For functionals typically
encountered in aerodynamic shape optimization, this appears to be the case. The following
sections will give one example where progressive parameterization is highly effective,
followed by a counterexample that does not satisfy Equation (2.5).

Example: Curve Matching

Consider approximating a continuous target curve y⇤(x) on x = [0, 1] with piecewise linear
segments, forming a best-fit curve y(x). The objective is measured as the L2-norm of the

5Without nesting, Equation (2.4) may not be true in the short term, due to the suboptimality of different
shape control distributions. One example is given in [52], Figure 4, where moving from 8 to 9 evenly-spaced
parameters actually resulted in an inferior final design. In that situation, Ck 6⇢ Ck+1 and it so happened that
the lower dimensional space contained a superior design.
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Figure 2.3: Convergence to the continuous optimum with refinement of the control variables. Each
data point represents a full optimization in a discretized search space.

point-wise distance between corresponding points on the curves:

JA =

✓Z 1

0
(y(x)� y⇤(x))2dx

◆0.5

In the continuous sense, the design variables are the y-values at every point on the curve.
We discretize the search space by selecting a finite number of uniformly-spaced positions xc

at which to control the curve. The approximation y(x) is constructed by linear interpolation
between the deformations yc at these stations. In the notation of Chapter 2, S = y(x),
C = xc, X = yc, and D consists of linear interpolation.

Now consider multilevel optimization of JA, with y⇤(x) = x2. Starting with three de-
sign variables (x0

c = [0, 0.5, 1.0]), the control resolution is gradually increased by uniform
refinement. In the limit of control refinement, the continuous curve-matching problem is
recovered. At each level, the curve is optimized to convergence, allowing evaluation of the
maximum potential J k

? of that level (the continuous optimal value is J •
? = 0). Figure 2.3a

shows that J k
? converges at second-order rate with respect to the number of design vari-

ables. This is the expected result for approximating a smooth curve with evenly-spaced
linear segments. In this design space (characterized by the shape-matching objective func-
tion and the manner of shape control refinement), Equation (2.5) holds — lower frequency
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shape modes capture the majority of the relevant information about the curve. All the
aerodynamic shape optimization cases considered in the work behave in this manner.

Appropriate Test Functions for Progressive Parameterization

Not every optimization test function is appropriate for benchmarking progressive parame-
terization. Consider, for example, the N-dimensional extension of the Rosenbrock function:

JB =
N�1

Â
i=1

�
(1� xi)

2 + 100(xi+1 � x2
i )

2�

with a global optimum of JB = 0 at xi = (1, 1, . . .).
Whereas the curve parameterization was spatially organized, the Rosenbrock design

variables lack a coherent structure. Consider naively reducing the N-dimensional design
space in the same way as before. We can arrange the coordinates xi along a line, and drive
their values using a coarser set of control coordinates, with linear interpolation between.
This is technically a valid multilevel optimization approach, in the sense that in the limit
of refinement, optimization will take place with the original N design variables. The levels
are perfectly nested, so Equation (2.4) is satisfied. However, the strategy exhibits highly
non-smooth convergence as shown in Figure 2.3b. The initial 3-DV parameterization is able
to reduce the objective somewhat, by finding the N-D analog of the 2D Rosenbrock valley.
However, no appreciable progress can be made with the next two parameterizations. Only
upon recovering the full design space is any (and all) remaining potential recovered. Thus
Equation (2.5) is not satisfied, and so this is clearly an inappropriate multilevel strategy.6

Throughout this work I will therefore turn to similar shape-matching problems as more
representative analytic test functions for progressive parameterization.

In this work I observe that a multilevel approach accelerates several common aerody-
namic shape optimization problems. For more general problem classes, it is worth men-
tioning the approach of [93], which develops a general procedure for determining whether
multiscale optimization is suitable for a particular combination of governing PDE, optimiza-
tion problem type, and multigrid algorithm. They discuss several criteria which should be
satisfied, notably the degree of nonlinearity and consistency across levels.

6This example does not imply that the Rosenbrock function does not admit any design space reduction tech-
niques, merely that the obvious, chosen reduction is inconsistent, in that coarser levels are not representative
of finer ones.



18 CHAPTER 2. PROGRESSIVE PARAMETERIZATION

2.2 Optimization with Progressive Parameterization
Modify shape
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Refine shape 
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Figure 2.4: Optimization loop with
periodic search space refinement

The design loop is illustrated in Figure 2.4 and consists of
a nested, alternating sequence: optimization within the
current search space followed by refinement of the shape
control. The optimization is divided into a sequence of
sub-problems, each involving optimization in the fixed
space spanned by Xk. When transitioning to the next op-
timization level, the shape is held fixed, while the shape
control is enriched.

An alternative approach to refining at discrete inter-
vals might more continuously introduce degrees of free-
dom, without halting the optimization. Although this might improve efficiency, it would
require development of a specialized optimization routine. By refining only at discrete in-
tervals, existing design optimization frameworks can be invoked to solve each sub-problem
in a “black-box” manner. Additionally, discrete refinement moments provide convenient
opportunities to safely programmatically modify the optimization problem, e.g. increasing
the flow mesh resolution or farfield boundaries [94], relaxing design variable bounds, or
resetting objective regularization terms [46].

This nested optimization loop is given explicitly in Algorithm A, which integrates three
basic software components: (1) a geometry modeler, (2) a shape optimization framework,
and (3) functions that guide search space refinement. The shape optimization framework
and geometry modeler are treated as independent servers and are invoked during the outer
loop over the sequence of search spaces.

2.2.1 Shape Control Basis

While the parameterization will be variable, the shape control basis is specified by the
designer and is fixed throughout adaptation. The basis completely defines all aspects of
the deformation that are fixed. Some examples of shape control bases are

• Wing twist about a given axis through a wing, linearly interpolated spanwise.

• Deformation of an airfoil by Hicks-Henne bump functions, e.g. y = sin4(px
log 0.5
log xj ),

where the locations xj will be determined by adaptation.

The system automatically adapts the resolution and distribution of shape control within
this framework.
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Algorithm A: Optimization with Progressive Parameterization
Input: Shape parameterization function P ; initial surface S0,

shape control C0, and DV bounds b0; objective and
constraint functionals J , Cj

Result: Optimized surface S

D0, X0  P(S0, C0) // Parameterize

k 0
repeat

S, yj, B OPTIMIZE(J , Cj, Dk, X0, b) until TRIGGER(·)
Cc  GETCANDIDATES(Ck)
if adaptive then

Ck+1  ADAPTSHAPECONTROL(P , Ck, Cc, S, yj, B)
else

Ck+1  Ck + Cc // Uniform refinement

end
Dk+1, X0  P(S, Ck+1) // Re-parameterize

bk+1  PROLONG(bk, Ck, Ck+1)
k k + 1

until convergence of J k
? � J k+1

? w.r.t. C

Function color key:
BLUE: Refinement strategy (modeler independent)
BLACK: Standard adjoint-based design framework

Auto: Partition
Feature/Constraint

Parameter

Auto: Parameterize
Binary 

Refinement

User: Mark features and constraints

Auto: Refine uniformly

A B C

D E F

Auto: Refine adaptively

Figure 2.5: Progressive parameterization with discrete,
hierarchical shape control refinement

As an example, Figure 2.5 illus-
trates the basic process for airfoil de-
sign. The designer selects a deforma-
tion technique (e.g. bump functions or
splines, etc.), marks the leading and
trailing edges and spar locations as
“anchors” (black and orange dots in Fig-
ure 2.5), and places a single root shape
controller in each region between an-
chors (blue dots). Thereafter, the shape
control is automatically adaptively re-
fined by the system.

The actual vehicle for specifying
the basis is a designer-provided func-
tion P (Equation (2.2)) that takes the
current shape control C and prepares the modeler for deformation. This will typically
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involve generating setup files for deformation, pre-computing deformation modes, etc. Un-
like in static optimization approaches, where this is a manual pre-processing step, here it
must be automated. Further discussion of shape control bases and geometry modelers is
deferred to Chapter 4.

2.2.2 Sub-optimization Solver

Each sub-level of the overall design problem is optimized under fixed shape control, a
process represented by OPTIMIZE(·). This can be performed in a mostly black-box manner
by any shape optimization framework. For reference, the typical suboptimization process
is outlined in Appendix A, Function 2.

For the studies and demonstrations in this work, I use an existing design framework
that uses an embedded-boundary Cartesian mesh method for inviscid flow solutions [95].
Aerodynamic objective and constraint gradients are computed using an adjoint formula-
tion [96, 97]. These same adjoint solutions are later reused to prioritize candidate design
variables when refining the search space [98]. For the numerical studies in this work, flow
meshes are automatically adapted throughout optimization to reduce the discretization
error in the output functionals [94, 99–101]. This adaptive meshing approach is discussed
in more detail in Appendix C.

The framework supports design with arbitrary parametric geometry modelers, an im-
portant feature that I maintain also in the adaptive system. Geometric functionals and their
analytic derivatives are computed by a standalone tool that operates directly on simulation-
ready discrete surfaces. The design framework communicates with all geometry tools
via XDDM, anXML-based protocol for design markup [95]. Each sub-optimization can be
driven by any general, nonlinear, gradient-based optimizer; for this study, the SQP opti-
mizer SNOPT [102] is used, enabling proper treatment of linear and nonlinear constraints.
I use the full-memory BFGS variant, as the problems considered here involve fewer than
1000 design variables.

2.2.3 Refinement Procedure

The parameterization refinement is governed by several new procedures. Each will be
developed in detail in later sections — this section briefly outlines the process flow. During
each suboptimization level, design progress is monitored by TRIGGER(·), which deter-
mines when to terminate this level and refine the shape control. Next, GETCANDIDATES(·)
generates a list of possible locations where the shape control may be refined. By analogy to
mesh adaptation, Algorithm A uses an h-refinement approach to adding design variables.
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Optimal continuous positioning of the shape controllers (r-refinement) is not considered.
This decision was motivated by the desire to have a simple, yet sufficient system. As will
be shown in Section 2.3, managing a discrete set of candidate shape control locations leads
to a straightforward method for adaptively refining the parameterization.

Finally, some subset of these candidates are marked for refinement. The simplest ap-
proach is to add all of them; I will call this “uniform” refinement. Alternatively, the system
can predict which subset of the candidates would best enrich the search space. This adap-
tive procedure is represented by ADAPTSHAPECONTROL(·). Note that exploring different
shape control bases is outside the scope of this function. While this could be considered in
future work, it is a much more algorithmically challenging problem.

Once again, P invokes the geometry modeler to refine the parameterization, which ex-
pands the search space available to the optimizer. Upon refinement, PROLONG(·) transfers
the design variable bounds from the previous search space into the new one. It could also
potentially transfer approximate Hessian information to initialize the optimization in the
new search space. I do not attempt that in this work, but instead cold-start each subop-
timization level with B0 = I. This is done in order to isolate the acceleration due solely
to reduction in NDV from the relatively unknown factor of Hessian preconditioning. This
approach is conservative; the substantial design acceleration demonstrated in this work
can be further accelerated by preserving Hessian information from previous design spaces.

2.2.4 Convergence

Convergence of Algorithm A happens as the discrete shape control C approaches continu-
ous shape control7. The process would be terminated when the objective (or merit function)
has converged sufficiently to the continuous local optimal value J •

? with respect to shape
control refinement. We do not usually know J •

? , except for attainable inverse design
problems. However, after sufficient refinement, if Equation (2.5) holds, then J k

? � J k+1
?

might be expected to enter a region of asymptotic convergence to zero (see Figure 2.3a). Its
magnitude could thus be used as a rough convergence criterion [103].

More rigorously, in Chapter 3 I develop a refinement indicator that directly estimates
the potential for design improvement in a hypothetical refined search space. When this
potential falls below a certain threshold, it could be determined automatically that further
refinement and optimization is not worthwhile. An alternative approach might directly
estimate proximity to the optimal solution, by analogy to error estimation in adaptive PDE

7If the designer-specified shape control bases cover all possible deformation “directions”, then C• ⌘ S,
direct optimization of every point on the surface.
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solvers. One approach might be to use second-order adjoints, similar to the approach
in [104] for optimization with progressive meshing. In practical settings, however, the
optimization is most likely be terminated based on computational resource limits. The
main goal of Algorithm A is to improve the design as rapidly as possible, and will not
usually be allowed to converge deeply, except in verification cases.

If for some reason Algorithm A encounters a design space that does not admit multilevel
acceleration, it will simply continue to refine the shape control until the original design
space is recovered (as happened in Figure 2.3b). In this hypothetical case only efficiency
would be compromised, not robustness. Anecdotally, none of the examples and studies
in Chapters 5 and 6 encounter this situation, which strongly suggests that progressive
parameterization is appropriate for most aerodynamic shape design problems that involve
well-structured shape control.

2.3 Discrete Shape Control Refinement

In this work, I adopt a discrete refinement approach, similar to [50]. The conjecture is
that by localizing refinement of the shape control, many problems can be solved with
far fewer degrees of freedom than required with uniform shape control. As shown in
Figure 2.5, the shape control is partitioned into independently-controlled regions (labeled
A-F) between important design features, which are to be preserved or directly manipulated.

Wing stations

Airfoil design

Fuselage cross-sections

a

b

Figure 2.6: Progressive parameterization of an aircraft configuration
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Under a discrete approach, it is natural to organize the shape control into binary trees.
Each region has a “root” controller, and higher resolution control is introduced through
binary refinement. In the limit of refinement, this sequence converges to continuous shape
control that completely “fills” the surface being designed. This scheme easily generalizes
to encompass parameterization of a full aircraft configuration, as illustrated in Figure 2.6.
Each component has its own set of shape control trees, allowing its parameterization to
be refined independently. Each control station may enact several modes of deformation,
which can each be represented by independent subtrees. In wing design, for example, twist,
thickness, dihedral, and airfoil control are each represented by a separate tree.

Anchor

candidates

Root

h

H = 2M�L

x

L R

RRRL

RRL

Figure 2.7: Binary tree and grid representations of
an airfoil shape parameterization, showing candi-
date refinement locations computed by Function
3 in Appendix A

As shown in Figure 2.7, each shape con-
troller can be uniquely identified by a string
of L’s and R’s, indicating a path down the
tree. These identifiers provide information
about the structure of the parameterization
that is used to determine refinement candi-
dates and to transfer information between
search spaces. Interpreting these identifiers
is the role of the parameterization function
P , which generates the specific shape de-
formation modes from this generic descrip-
tion.

The binary tree structure can equiva-
lently be represented as a Cartesian grid,
as depicted at the bottom of Figure 2.7.
For certain purposes this can be a more
useful representation, enabling straightfor-
ward analogies to meshing and repurpos-
ing of familiar algorithms for searching, traversal and refinement [105]. For a parameteriza-
tion with only one principal direction (e.g. twist along a wing or airfoil deformation), the
tree- and grid-based views are functionally equivalent. For a 2D parameterization, however,
one or the other may be more appropriate to define the refinement rules.

2.3.1 Shape Control Refinement

Consecutive shape control levels are constructed by binary subdivision of the leaves in the
current tree. A specific procedure is given in Appendix A, Function 3 and is illustrated in
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Figure 2.7. Under uniform refinement, this process leads to complete “coverage” of the
curve or surface and in the limit of refinement it leads to continuous control of the shape
(within the given shape control basis). New shape controllers may be placed only at the
midpoints between existing shape controllers, but the refinement could be directionally
biased, e.g. to cluster parameters towards the leading edge of a wing. In other words, the
tree-representation of the shape control logically partitions the surface, but the geometry
modeler may map this to physical space via any function.

By recursion, Function 3 can refine more than one level at a time. The number of new
parameters generated is roughly 2dD�1NDV , where NDV is the current number of design
variables, d is the search depth, and D is the dimension of the parameterization (e.g. D = 1
for curves, D = 2 for 2D surface parameterization). Many parameterization techniques
support infinitely-refinable shape control resolution, but it is usually appropriate to specify
a maximum refinement depth dmax, which maintains a minimum spacing between adjacent
parameters and imposes smoothness constraints on the shape control.

2.3.2 Prolongation of Design Variable Bounds

Xk+1
j Xk

R

Xk
L

u0 1

Figure 2.8: Prolongation

Each design variable in search space k may have up-
per and lower bounds. When transitioning to search
space k + 1, bounds must be set for the newly added
variables. Because the binary tree shape control rep-
resentation enforces a high degree of spatial organi-
zation, we can define a “prolongation” operator that
transfers the bounds to the new search space. This
process is denoted by the function PROLONG(·) in
Algorithm A. A complementary “restriction” operator is not required, as we are using a
progressive, sequencing approach.

Let the upper and lower design variable bounds for shape control level k at parameter
i be designated bk

i ⌘ (lk
i , uk

i ). Say that on transitioning from search space k to k + 1, a new
parameter j is being added between parameters L and R, its nearest neighboring existing
parameters in the same tree, as illustrated in Figure 2.8. To determine bounds for this new
design variable, I linearly interpolate the bounds between the existing controllers:

bk+1
i = (1� u)bk

L + ubk
R (2.6)

where u is a mapping of the fraction of the distance between L and R at which j is located. If
the shape control is refined at midpoints instead of being skewed or biased in one direction,
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then u = 0.5.
This is a crude method, but consistent with the typical nature of design variable bounds

as crude restrictions of the search space. Linear interpolation correctly handles certain com-
mon uses of design variable bounds. For example, in a thickness/camber parameterization,
positive thickness can be enforced via non-negative design variable bounds on the thick-
ness parameters. In general, however, Equation (2.6) is not guaranteed to avoid invalid
designs, even if the original design variable bounds did. An example of this is given in
Section 6.1. This capability is included largely as a stopgap measure to handle common use
cases. It is generally preferable to codify the actual design requirements using geometric
constraints defined with respect to the surface itself.

There are many other types of data that may be associated with each design variables,
such as scale factors, finite difference step sizes, geometry modeler-specific parameters,
etc. An approach similar to Equation (2.6) can be used to transfer each of these to refined
parameterizations. Chapter 3 will develop a special Hessian prolongation operator to
estimate curvature in hypothetical search spaces.

2.4 Refinement Pacing

In typical static parameterization approaches, convergence is measured by monitoring an
optimality criterion based on the Karush-Kuhn-Tucker (KKT) conditions. With progressive
parameterization, however, we are more concerned about convergence with respect to the
shape control — the outer loop of Algorithm A. Within each suboptimization level, the
design is improved by exploiting the current search space. After a certain point, the existing
design variables offer negligible potential for improvement, and the shape control must be
refined.

The precise timing of this transition has a major impact on efficiency, as shown in
Figure 2.9. A foolproof approach is to fully converge each suboptimization, to achieve
maximal design improvement within each search space (as in [50]). However, this can
be extremely slow. Over-optimizing on the initial parameterization leads to long periods
of negligible design improvement, while triggering earlier can lead to much faster design
improvement. Similar observations have been made, both in this context [77] and regarding
optimization with progressively refined flow meshes [101].

In certain special cases, the objective may be to determine an optimal set of physical
degrees of freedom to build into a system — an example of this is given in Section 6.4,
which considers layout of a flap system. In such cases, each level should be allowed to
fully exploit the existing parameters before adding new ones. However, in most cases, the
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desire is to improve the the shape as rapidly as possible, and coarse parameterizations are
used merely to accelerate the rate of improvement. In these cases it is appropriate to only
partially converge each suboptimization.

2.4.1 Automatic Trigger
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Figure 2.9: Orange: Optimizing to convergence
on each level leads to slow design improvement.
Blue: Using aggressive slope-based transitions
permits much faster design improvement. ⇥-
marks denote parameterization refinements.

The designer can always manually invoke
a refinement of the parameterization. How-
ever, to avoid designer-in-the-loop actions,
I use an automatic signal to initiate a refine-
ment. This is represented by TRIGGER(·) in
Algorithm A. I ruled out certain simplistic
signals, based on a pre-determined number
of major iterations (as in [77]). This would
demand prior knowledge of the rate of con-
vergence for a problem, which is not con-
ducive to an automated system.

A less problem-dependent signal is
based on sufficient reduction in the order of
magnitude of the KKT optimality criterion
O, relative to the baseline:

log Oi
log O0

< r (2.7)

Unfortunately, gradient reduction is only
tenuously related to the actual rate of de-
sign improvement. I found establishing an
efficient cutoff r to be challenging and unintuitive. A more intuitive approach is based on
monitoring the slope of the objective convergence history for a diminishing rate of design
improvement with respect to a suitable measure of computational cost.8 The optimization
is terminated when this slope falls below some fraction r of the maximum slope that has
occurred so far:

DJi
max

k
(DJk)

< r (2.8)

8The slope is evaluated at major search iterations, which is monotonically decreasing. In the case of con-
strained optimization, I monitor convergence of SNOPT’s “merit function” [102]. For attainable inverse design
problems, the slope is measured in log-space to better reflect the problem.
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where DJi = Ji�1 � Ji. This is a pertinent choice from a practical perspective, where
the desire is usually to maximally improve a design within a resource budget. In this
case, setting the cutoff parameter r is more intuitive, as it constitutes a simple cost-benefit
analysis. For simple problems a fairly aggressive trigger can be used (I have used as high as
r = 0.2). For more challenging problems, especially ones with initially violated constraints,
it can be more effective to allow deeper convergence on the coarser parameterizations
before proceeding.

The denominators in Equations (2.7) and (2.8) normalize the triggers by accounting
for the widely differing scales (and units) that can occur in different objective functions
and their gradients. For example, drag is often O

�
10�2� while mission range may be

O
�
105�. In Equation (2.8), the normalization is by the maximum slope observed so far —

this accounts for the fact that quasi-Newton optimizers often require several iterations to
develop the Hessian approximation before they begin to make substantial progress. If the
normalization were instead by the initial slope, the trigger could be excessively delayed.
The objective and gradient histories can be non-smooth, which can cause false triggering.
This can be ameliorated by using running averages over a small window w, which smooths
the history and prevents premature triggering. Because this delays the trigger for w major
iterations, w should be as small as possible.

The main limitation of both Equations (2.7) and (2.8) is that they are myopic. They tacitly
assume that diminishing design improvement or gradient reduction indicates that the
search space is nearly fully exploited. This assumption is not always valid: the optimizer
could be simply navigating a highly nonlinear or poorly-scaled region of the design space,
after which faster design improvement would continue. Thus these triggers may introduce
shape parameters earlier than strictly necessary. However, under an adjoint formulation,
the cost of computing additional objective and constraint gradients is usually negligible
compared to the cost of over-converging in a coarse search space.



CHAPTER 3

GOAL-ORIENTED ADAPTATION OF THE

SHAPE CONTROL

Although uniform shape control refinement is guaranteed to approach the continuous op-
timization problem, indiscriminate introduction of design variables can quickly lead to
unwieldy search spaces that are slow to navigate. Moreover, evenly-spaced shape control
does not provide feedback regarding important regions of the surface. This chapter investi-
gates selective, localized adaptation of the shape control. To place my approach in context, I
first examine previous approaches to shape control adaptation and discuss their limitations.
I then introduce a more accurate, low-cost, goal-oriented refinement criterion that favors
design variables that offer the greatest potential for design improvement. I then develop
an adaptation strategy, which is paramount for overall efficiency.

3.1 Previous Approaches

Data-driven Methods

One possible approach to shape control adaptation involves preliminary sampling and
analysis of the design space to identify the most important degrees of freedom. [2, 61–63].
However, building a shape control adaptation process on this paradigm could be cost-
effective only in quite low-dimensional spaces. This is partly due to the nature of the
fitting [44], but also due to their “top-down” approach — sampling takes place in a finer

28
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search space than the final parameterization.

Another notable approach is that of Olhofer et al. [86], who use a genetic optimization
approach to simultaneously optimize the location of the shape parameters C along with
their values X. Under this approach, optimization is simultaneously taking place under
several different populations, each with a different parameterization. The main concern
with this approach is that it does not predict the best shape control a priori, but rather seeks
to fortuitously chance upon it. For optimization driven by high-fidelity flow simulations,
this is extremely expensive.1

These approaches would be more effective for determining a compact, well-spanning
search space in which to perform a large number of optimizations. In that case, the high cost
of a pilot data-driven optimization study could be amortized over all the future optimiza-
tions. The present work, however, aims for efficient one-time optimizations in (ultimately)
very high-dimensional search spaces. In this context, belatedly discovering an effective
parameterization is not useful.

Geometric Adaptation Criteria

In another class of adaptive approaches, the shape control is periodically redistributed
during optimization to improve its geometrical regularity, which is observed to moderately
accelerate the optimization [47, 75, 77, 79, 81]. Special definitions of “regularity” must be
defined for each parameterization technique (e.g. Bézier curves [75], free-form deforma-
tion [47], and B-splines [81]). It is not clear how to derive a universal, modeler-neutral
approach.

From analogous work in adaptive flow meshing, it is clear that such geometric or
feature-based refinement criteria tend to be effective only on a restricted set of problems.
For example, in [47, 75] an adaptation cost function is defined, which measures the total
variation of the deformed control point locations. They take this cost function as a surrogate
for the “ineffectiveness of the current parameterization” [77]. Despite its label, this cost
function measures ineffectiveness due only to poor conditioning, as measured via spectral
analysis [79]. It does not directly measure the parameters’ actual potential to improve the
objective function.

1However, when combined with more predictive methods, parallel evolution of parameterizations is not
without value, in the same way that a multistart strategy is a useful in the context of gradient-based design.
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Goal-Oriented Adaptation Criteria

Inspired by similar developments in adaptive meshing of PDES, a goal-oriented approach
might be expected to be more universally appropriate. In this approach, the parameteri-
zation is adapted precisely in order to more efficiently solve the optimization problem at
hand. A natural way to directly target the optimization problem is to leverage information
on the sensitivity of the objective and constraints to the shape control. To my knowledge,
the first such goal-oriented shape control refinement criterion in the literature is that of Han
and Zingg [106] (and later briefly examined in [83]). After disqualifying some candidate
parameters based on heuristics related to constraints and parameter spacing regularity,
they add the one parameter with the largest objective gradient, leading to the following
refinement indicator:

I(Ci) =

����
∂J
∂Xi

���� (3.1)

A similar approach was used by Poole et al. for reconstructing airfoil databases with com-
pact parameterizations [58].

Equation (3.1) assumes that large objective gradients are directly correlated with future
design improvement. Several factors can erode the validity of this assumption:

1. The presence of active constraints

2. Variation in design space curvature

3. Redundancy among parameters

The following sections briefly discuss these issues.

Constraints

Aerospace designers often account for the requirements of unmodeled disciplines by in-
cluding surrogate design constraints. For example, wing thickness constraints are often
used to enforce structural requirements. Because these surrogate constraints represent im-
portant design-driving disciplines, the constraints are typically active. A candidate shape
parameter is not useful if it must violate a constraint to improve the objective. It is therefore
important to prioritize shape parameters that enable feasible objective reduction.

For localized constraints (e.g. wing thickness), one could simply exclude any candidate
shape control stations located near the active constraints, as done in [50]. However, this
does not work for important non-local constraints, such as lift, pitching moment or wing
volume. Alternatively, any constraint can always be incorporated into the objective via a
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penalty term:
Ĵ := J + Â

j
wj(Cj � c⇤j )

2

if one accepts the attendant drawbacks: user-defined weights, inexact constraint satisfac-
tion, and possible ill-conditioning.2 The indicator I develop will instead handle general
linear and nonlinear constraints, including design variable bounds, using an approach
based on the Karush-Kuhn-Tucker (KKT) optimality conditions [107].

Design Space Curvature and Redundancy

The second derivative of the objective reveals and quantifies two important factors for
ranking candidates. First, large curvature indicates that a candidate design variable is not
as effective as its gradient would otherwise suggest. Secondly, while a pair of candidates
may individually offer high potential, the potential may be mutually exclusive — adding
both might not be helpful. The opposite is true as well; one shape controller can become
more effective in the presence of another. These factors can both be seen in the Hessian
matrix H := ∂2J

∂X2 , by decomposing it into diagonal and off-diagonal terms:

H = a(D + O)

The first factor is encoded by variation along the diagonal D, while redundancy is revealed
by the presence of large off-diagonal entries O. Note that variation in the constant factor
a does not change the relative ranking of candidates. It is not design space curvature per se
that matters, but rather variation in curvature.

In a typical static parameterization approach, Hessian information is not typically avail-
able a priori, short of prohibitively costly finite-differencing. However, at a refinement
stage during progressive parameterization, a substantial degree of optimization has al-
ready taken place in coarser search spaces. With spatially structured shape control, it is
possible to use Hessian information from previous coarser spaces to help guide adaptation,
with negligible overhead.

2Also note that this cannot simply be used as a temporary surrogate functional for adaptation. Assuming
the constraints are satisfied, their gradients are zero, and so their influence could be accounted for only through
their Hessians. This penalty formulation would have to be used for the shape optimization itself, so that the
quasi-Newton Hessian approximation would reflect the constraints.
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Non-Separability

Another subtle issue with Equation (3.1) is that it examines only the gradient of the single
candidate parameter being considered. However, under most parameterization techniques,
a parameter’s deformation mode depends also on where its neighboring shape parameters
are located.

Figure 3.1: Under an interpolation-
based deformation model, the red pa-
rameter’s deformation mode shape
(and thus the potential it offers) de-
pends on the location of its neighbors.

To see this, consider Figure 3.1, which depicts
shape modes that interpolate prescribed deforma-
tion between control points. The addition of a
new parameter (green dot) shrinks the deformation
mode of its neighbor (red dot). This is true for
any technique involving interpolation between con-
trollers (e.g. spanwise lofting or radial basis func-
tions) and is also true for any technique with “com-
pact support”, such as B-splines and free-form de-
formation. Similarly, with global modes such as
Bernstein polynomials or class/shape transformation
methods [108], raising the degree of the polynomial basis changes all the shape functions.

The implication is that, in general, a given shape control candidate Ci does not neces-
sarily define a unique corresponding deformation mode Xi.3 Rather, the parameterization
function P(C) is a nonlinear function of the ensemble of shape control. A refinement indica-
tor that is expected to work with arbitrary parameterization techniques must likewise treat
the shape control as an ensemble, unlike Equation (3.1).

3.2 Refinement Indicator — Maximum Potential

To explicitly address the previous issues, I now develop a more general class of refinement
indicators. Simply put, the goal of this indicator is to prioritize design variables that maxi-
mize the potential for design improvement in the next search space. This potential is defined
as the objective reduction that would be possible in the candidate search space defined by
C, without violating any constraints:

DJ?(C) = J0 � J (X?) (3.2)

3For certain specific techniques, including algebraic bump functions [7] this is not an issue. The point is
that we cannot rely on this for a system that is expected to work with arbitrary parameterization techniques.
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where J0 is the current objective value, i.e. the optimum achieved in the previous search
space. The local refinement indicator for a candidate parameter Cc is the additional poten-
tial that it would offer over the existing shape control:

I(Cc) := DJ?(C + Cc)� DJ?(C) (3.3)

To compute this indicator, we must estimate the optimal objective value J (X?) in a hypo-
thetical search space.

Quadratic fit of objective

J

X0

Xc

Candidate search space

�J�

X�

Linearized constraints

Figure 3.2: Estimating feasible design improvement in a can-
didate search space using a local quadratic fit of the objec-
tive and local linearization of the active constraints.

Figure 3.2 gives a rough illus-
tration of the approach to estimat-
ing J?(C), the potential of the
nonlinear candidate search space
spanned by X. I take a local
quadratic fit of the objective and
local linear fits of the active con-
straints about the current design
X0. The quadratic fit is computed
from the objective’s current value
J0, gradients ∂J

∂X , and Hessian ma-
trix H. I take the analytically
known minimal objective value of
this local fit as an estimate of J?.4

For reasons that will become ap-
parent later, I begin the derivation
from the viewpoint of continuous shape optimization and then show how it projects into a
finite search space.

3.2.1 Potential of the Continuous Design Space

Denote the inner product of two continuous surface vectors as

ha, bi :=
Z

S
a(x)b(x)dA(x) (3.4)

4One might propose stepping straight to the predicted optimum, but there is no way to do so robustly. Even
with an exact Hessian, if higher-order derivatives are large, then the proposed step could actually be arbitrarily
worse than the current design. Here I use local, approximate derivatives to predict the best shape control but
leave navigation to a robust optimizer.
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where x is some surface coordinate on S. If S is a surface, then dA(x) represents a differential
area. If S is a curve, then dA(x) is a differential segment of the curve. The design functionals
Fj must not depend on the shape control. The following derivations preclude simultaneous
optimization of the design variables X and the shape control C, as in [86]. This is satisfied
under the approach developed in Chapter 2, which explicitly decouples X and C. To avoid
cluttering the derivation, I assume that Fj are functions of S only, taking any operating
conditions Q constant. The extension to include operating conditions is straightforward,
as Q is usually a finite, fixed set of variables.

Denote the potential for feasible objective reduction in the continuous design space as

DJ •
? := J0 � J (S?) (3.5)

where S? is the unknown optimal shape. To proceed, I will derive a second-order estimate
of this potential. A local quadratic fit by Taylor expansion about the current design gives

J (S0 + dS) = J (S0) +

⌧
∂J
∂S

, dS

�
+

1
2
hdS, HdSi+ h.o.t. (3.6)

where H is the continuous symmetric Hessian operator of the objective:

H : dS! d
∂J
∂S

(3.7)

In other words, H returns a second-order sensitivity indicating how the surface objective
gradient would change in response to unit deformation in the direction dS. Combining
Equation (3.5) and Equation (3.6), and neglecting higher-order terms we have

DJ •
? ⇡ �

⌧
∂J
∂S

, dS?

�
� 1

2
hdS?, HdS?i (3.8)

where dS? := S? � S, the step to the optimal design. I estimate dS? as the step to the
minimizer of the local, constrained quadratic fit; this is the classic Newton iteration applied
in a continuous setting.

The currently active constraints Ca ✓ C are linearized about the current design:

Ca(S0 + dS) = c0 +

⌧
∂Ca

∂S
, dS

�

where c0 are the current constraint values. I make two simplifying assumptions:

1. All active constraints are currently satisfied (c0 = c⇤).
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2. Currently inactive constraints remain inactive at the optimum, so that Ca,k+1 ✓ Ca,k.

Although this derivation can be extended to not require Assumption (1), it is usually safe
to assume, assuming the problem has been posed correctly. As long as the constraints are
initially satisfied, or at least driven to satisfaction within the first sub-optimization level, the
optimizer will be able to keep them satisfied as more degrees of freedom are added. If for
some reason a constraint is not satisfied, or perhaps fundamentally unable to be satisfied,
then the refinement indicator will consider it active and will seek to make it no less satisfied
than it currently is.

Assumption (2) could be more problematic in certain cases. If the full Newton step
subject to the active constraints would violate a currently inactive constraint, then the
potential of the design space would be lower than expected. Predicting the correct active
set of constraints at the optimum is a challenging problem even for sophisticated optimizers,
so I leave this more general case for future work. The goal here is to make a prediction
about the optimum without actually expending the optimization effort to navigate there.

The constrained minimizer of the quadratic fit is found by solving the following (con-
tinuous) system of equations, called the KKT system5:

2

4
H ∂Ca

∂S⇣
∂Ca

∂S

⌘T
0

3

5
 

dS?

l

!
=

 
� ∂J

∂S

0

!
(3.9)

where l are the KKT multipliers.6 The zero on the right hand side of Equation (3.9) is the
result of Assumption (1) above. The top half of the KKT system gives the Newton step to
the optimum of the constrained quadratic problem:

dS? = �H�1
✓

∂J
∂S

+ l
∂Ca

∂S

◆
(3.10)

To be clear, dS? is a non-infinitesimal deformation of the continuous surface. To solve for
the KKT multipliers l, we substitute Equation (3.10) into the bottom half of Equation (3.9).
This yields the following system of equations (one per active constraint):

*
∂Ca

j

∂S
, H�1

✓
∂J
∂S

+ li
∂Ca

i
∂S

◆+
= 0

5For a general derivation of this system see, e.g. [41].
6For constraints of the form Cj(S) = cj, Cj(S)  cj, and Cj(S) � cj, the KKT multipliers must satisfy lj 6= 0,

lj � 0, lj  0, respectively. In the absence of inequality constraints, these are called Lagrange multipliers.
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This system is satisfied when

li
∂Ca

i
∂S

= �∂J
∂S

(3.11)

Equation (3.11) is (infinitely) over-determined and is only exactly true at the optimum, so
we can only approximate l.

Substituting Equation (3.10) into Equation (3.8) yields

DJ •
? =

1
2

*✓
∂J
∂S
� l

∂Ca

∂S

◆
, H�1

✓
∂J
∂S

+ l
∂Ca

∂S

◆

| {z }
A

+
(3.12)

This is an estimate of the potential for feasible objective reduction in the continuous space.
Term A in Equation (3.12) is related to the KKT stationarity condition. Optimization drives
A ! 0, and thus DJ •

? ! 0, which is an indication that the design is approaching a
continuous local optimum. If there are no constraints,

DJ •,�C
? =

1
2

⌧
∂J
∂S

, H�1 ∂J
∂S

�

Because this is in quadratic form, if H is positive definite (indicating local convexity),
then DJ •

? � 0, which makes sense — the potential for improvement certainly cannot be
negative. Except for within a vicinity of the optimum, the true Hessian is not necessarily
positive definite. This will be resolved by using a quasi-Newton approximation of the
Hessian, which is positive definite by construction.

Equation (3.12) indicates whether further optimization is warranted, but not does not yet
indicate how best to focus the shape control. Moreover, Equation (3.12) is not computable,
both because it is expressed in the continuous space and also because we do not generally
have the exact Hessian for aerodynamic problems. The next step is to project this into a
finite search space, which will yield a computable estimate of remaining potential and also
provide a refinement indicator.

3.2.2 Potential of a Finite Search Space

Now we return to the original aim: computing the expected design improvement in a finite
search space defined by the shape control C. The goal is to compute this using only the
gradient vectors ∂Fj

∂X and a quasi-Newton Hessian approximation from the previous search
space Bk. This will require a discretization of the continuous shape control.
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Discretization

The discrete approximation of Equation (3.4) is the area-weighted dot product of two finite
vectors defined at discrete points on the surface:

ha, bi ⇡
Nverts

Â
i=1

a(vi)b(vi)A(vi)

Then the discrete estimate of Equation (3.12) is:

DJ •
? ⇡

1
2 Â

i

 
∂J
∂S
� lj

∂Ca
j

∂S

!

i

(�dS?)i Ai (3.13)

The discrete locations i correspond to the locations of the shape parameters Xi, which
includes both existing and candidate design variables. For simplicity, I will assume that
the shape modes have compact support, so that each is localized to a region of the surface.7

This will be sufficient for the purposes of this thesis, but would require slight modification
to be appropriate for highly-overlapping shape modes.

h
A

Linearly interpolated tw
ist

Ah

Figure 3.3: Shape mode characteristic dimensions
A and h for two parameterization techniques. For
the twist case, h might indicate, e.g. 1� twist.

For design variable Xi, let Ai indicate its
characteristic “footprint” area (in 2D, A is a
width)8. Let h represent the unit deforma-
tion magnitude, corresponding to the units
of the deformation mode. It is reasonable to
assume that the magnitude of a unit defor-
mation remains the same within each shape
control tree, regardless of location or depth
in the tree. If the units of Xi are the same
as the units of dS then h = 1. By describ-
ing the deformation modes in these rough
terms, the claim is that the specific shape of
the mode is not important, as long as it remains consistent with refinement. This assump-
tion is validated in Appendix B.3.1.

The gradient vectors are obtained by projecting the continuous gradient density ∂F
∂S into

7Technically, I assume that the shape modes do not overlap, but the results show this to be sufficiently
accurate even with modest overlap.

8For many parameterizations it is obvious how to define Ai, but it can also be computed directly as an
integration over the surface: Ai = 1

h
R
S

��� ∂S
∂Xi

��� dA
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the finite search space defined by the deformation modes ∂S
∂X :

∂F
∂Xi

=

⌧
∂F
∂S

,
∂S

∂Xi

�
(3.14)

Taking ∂F
∂S to be its average value within the region corresponding to shape mode i, Equa-

tion (3.14) can be approximated as

✓
∂F
∂S

◆

i
⇡ 1

Aih
∂F
∂Xi

(3.15)

This clarifies the fact that the continuous gradient with respect to the surface is in fact a
gradient density, with units [F ]

[X]·L2 . Equation (3.15) is a valid approximation for any design
functional (see Figure B.1) but only applies to localized, non-overlapping deformation
modes. Using Equation (3.15), Equation (3.13) becomes

DJ •
? ⇡

1
2 Â

i

1
h

 
∂J
∂Xi
� lj

∂Ca
j

∂Xi

!
(�dS?)i (3.16)

First-order Indicator

If we ignore the Hessian, we can now derive a first-order estimate of design improvement.
From Equation (3.16) and Equation (3.10), taking H = I , and again using Equation (3.15),
we obtain

DJ⇢H
? =

1
2

NDV

Â
i=1

1
Aih2

 
∂J
∂Xi
� lj

∂Ca
j

∂Xi

! 
∂J
∂Xi

+ lj
∂Ca

j

∂Xi

!
(3.17)

To compute the KKT multipliers, we project Equation (3.11) into ∂S
∂X :

li
∂Ca

i
∂X

= �∂J
∂X

(3.18)

This is a set of NDV equations that form an over-determined system, which is only exactly
satisfied at the optimum in the finite search space. In a refined candidate search space, the
shape will certainly not be optimal. Therefore, I compute a first-order estimate of the KKT

multipliers using an iterative bounded least-squares solver.9 Higher-order approximations
of li are possible, but it is challenging to guarantee that they are actually more accurate
than this first-order estimate [110].

9I used scipy.optimize.leastsq from the SCIPY library [109], with high-weighted quadratic penalties on
bounds violations.
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In the absence of active constraints, Equation (3.17) becomes

DJ⇢H,�C
? =

1
2

NDV

Â
i=1

1
Aih2

✓
∂J
∂Xi

◆2
(3.19)

Like Equation (3.1) (the indicator from [111]), this indicator uses only objective gradients.
However, unlike Equation (3.1), this one accounts for the gradients for all of the design
variables.

Second-order Indicator

As we will see in the verification studies (Chapter 5), the first-order indicator can make
grossly inaccurate predictions of performance, even on fairly simple problems. This is
because it omits Hessian information, which is essential both when redundancy is present
and when comparing different classes of shape control. For these reasons, I now develop
a second-order estimate of design improvement potential. This is substantially more chal-
lenging, and so a detailed discussion is relegated to Appendix B, with the salient results
are restated here. The Newton step dS? = �H�1

⇣
∂J
∂S + l ∂Ca

∂S

⌘
must be projected into the

discrete space, so that it can be expressed in terms of an approximation of the Hessian
matrix H. Due to overlap of shape modes, nonlinearity, and the nature of the objective
function itself, (dS?)i is not necessarily equivalent to the step taken by a black-box quasi-
Newton optimizer. As before, the deformation modes are assumed to be localized. For
global modes, the following derivations would require some modification. For general
objectives, the problem is quite broad, and so I make the following restrictions:

1. The surface deformation is sufficiently linear with respect to the design variables.

2. The objective Hessian operator H is a local differential operator.

3. Within a given shape control tree, the deformation modes have consistent shapes and
characteristic magnitudes (or units).

These are not fundamental restrictions on the general idea, but they greatly simplify the
derivation and are sufficient for the present purposes. More detailed discussion is given in
Appendix B.

Using these assumptions, Appendix B.2 derives discretized approximations of the New-
ton step dS? for two specific objective functions. The first is geometric shape matching:

J GSM :=
1
2

Z

S
(y(x)� y⇤(x))2dA(x) (3.20)
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where x is a coordinate on the surface, y(x) is the surface deformation and y⇤(x) is the
target shape. For this objective, using dS? from Equation (B.12), Equation (3.16) becomes

DJ GSM
? =

1
2

NDV

Â
i=1

 
∂J
∂Xi
� lj

∂Ca
j

∂Xi

!
1

Hi,i

 
∂J
∂Xi

+ lj
∂Ca

j

∂Xi

!
(3.21)

Now consider a 2D inverse surface pressure-matching functional

J P =
1
2

Z

S
(p(x)� p⇤(x))2dA(x) (3.22)

where p⇤(x) is the target profile. For this objective

DJ P
? =

1
2

NDV

Â
i=1

 
∂J
∂Xi
� lj

∂Ca
j

∂Xi

!
1
Ai

1
Hi,i

1
4

✓
Zi�1

Ai�1
+ 2

Zi
Ai

+
Zi+1

Ai+1

◆
(3.23)

where Zi := ∂J
∂Xi

+ lj
∂Ca

j
∂Xi

.
Unlike for the shape matching objective, Equation (3.23) contains a term proportional

to 1
A2 , which explicitly accounts for scale-dependence of the Hessian matrix due to dis-

cretization of the shape control. Appendix B shows that without this term, the expected
improvement would falsely appear to decrease as more shape control was added. The
presence of a scale-dependent term is likely to arise for other aerodynamic functionals as
well, and it is important to not neglect it. While we might expect that J?(Ck+1) > J?(Ck)

(more degrees of freedom should offer more potential), J?(C) should not explicitly grow or
shrink based on the resolution of shape control. If it did, then in the limit of refinement J •

?

would tend to either zero or infinite potential, which are both clearly incorrect.

3.3 Efficient Computation of the Indicator

The estimates developed in the previous section require computation of gradients and a
Hessian diagonal, both in a hypothetical candidate search space. This section shows how
these can be computed at very low cost — no additional PDE solutions are required. The
approach is based on two premises:

1. An adjoint approach is used, so that ∂Fj
∂X can be computed via inner products.

2. A quasi-Newton optimizer is used to solve each level of Algorithm A, so that a Hes-
sian approximation Bk is available.
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In general, I preclude any modification of the existing design tools, so that the method
can be used immediately with any standard combination of flow and adjoint solver, quasi-
Newton optimizer, and geometry modeler.

Candidate Gradients

During optimization, the adjoint solutions Y := {yo, yj} are used to efficiently compute
gradients with respect to the design variables. Upon shape control refinement, assume that
the shape itself does not change:

Sk
f inal = Dk(Xk

f inal) = Dk+1(Xk+1
0 ) = Sk+1

0 (3.24)

where k and k + 1 are the current and subsequent search spaces. Then the first iteration in
the new search space is identical to the final iteration in the previous space, meaning that
the adjoint solutions are identical:

Yk
f inal ⌘ Yk+1

0

for any possible re-parameterization. This is the fundamental insight that will allow rapid
computation of gradients with respect to the candidate design variables. To compute these
gradients, we can project the existing sensitivities encoded in Yk

f inal into the candidate
deformation modes. For the purposes of estimating design improvement, Yk+1

0 does not
need to be computed.10

The process for computing the gradients is given in Appendix A, Function 4. Parallelism
can happen at coarse and fine levels. Computation of shape derivatives and gradient
projections are completely independent. Furthermore, the gradient projection tool I use
supports internal fine-grained parallelism [95].

This procedure is only valid if the shape is preserved exactly when refining the shape
control, which I refer to as a “neutral shape mutation”, following Olhofer et al. [86]. All
discrete geometry modelers inherently support this — the static baseline shape can simply
be reset to the current shape at any time. In general, constructive (CAD-like) modelers
do not seamlessly preserve the geometry when changing the parametric definition, but
rather perform a refitting procedure to minimize the “jump” in the shape. Even then, any
remaining discrepancy between Sk

f inal and Sk+1
0 casts uncertainty on the validity of using

the previous adjoint solutions. Chapter 4 discusses this issue in greater detail.
10In fact, even after refining the parameterization, Yk+1

0 would not need to be computed. The flow and
adjoint solutions for the first iteration could be skipped entirely, assuming no other aspect of the problem
definition (e.g. mesh resolution) has changed.
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Candidate Hessian Matrix

Exact computation of the Hessian is typically avoided, because of the high computational
cost and memory requirements. However, even approximate information on scaling and
redundancy could substantially improve the identification of an effective set of shape con-
trol. A progressive parameterization approach provides a unique opportunity to extract
existing Hessian information. Assuming there is some underlying continuous Hessian
that remains consistent as we project it into finer and finer shape deformation modes, then
it is reasonable to expect Hk

f inal to be closely related to Hk+1
0 , although their dimensions

are different. With quasi-Newton optimization (e.g. BFGS), by the end of level k we have
an approximation to the Hessian Bk

f inal . This suggests taking Hk+1
0 ⇡ E(Bk

f inal) where E
is some function that expands or “prolongs” the current estimate of the Hessian into the
finer candidate search space. Naturally this only makes sense with the type of spatially
organized shape control we are using here.

A convenient benefit of this approach is that the BFGS approximation is always positive
definite by construction. In optimization, this is accepted to be an effective way to ensure
navigability of non-convex regions of a design space. Here, it makes the adaptation pro-
cedure more robust to non-convexity by ensuring that the refinement indicator is always
positive.

Appendix B.4 provides some background on a number of alternative approaches that
compute exact or approximation Hessian information, including direct derivation, finite-
differencing, second-order adjoints, and automatic differentiation. However, all of these
approaches either (1) require at least the equivalent of O(NDV) linear PDE solutions, which
is prohibitive in this case, (2) require invasive, objective-specific modification to solvers,
which I want to avoid here, or (3) make insufficiently accurate assumptions. The present
quasi-Newton prolongation approach is particularly advantageous in that it uses informa-
tion already obtained during optimization, which makes the overhead cost negligible. Its
major unknown factor is the veracity of the approximation Bk ⇡ Hk. However, there is
very little burden on the accuracy of this approximation. As long as it is reliably superior
to taking Hk

= I, as assumed by the first-order indicator, then it is worthwhile.

Hessian Prolongation Operator

For now, I consider transferring only the Hessian diagonal, not the entire matrix. This is
sufficient under the assumption of localized shape modes, but would need to be expanded
for global modes. The basic form of the operator is linear interpolation. Say that on tran-
sitioning from search space k to k + 1, a new parameter j is being added between existing
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Table 3.1: Scale-dependent terms M in Hessian prolonga-
tion operator (Equation (3.25)) for two objective functions, ex-
pressed in terms of the deformation modes’ footprint areas A
(see Figure 3.3).

Objective Mj
i

Geometric shape matching (Equation (3.20))
Ak+1

j

Ak
i

2D surface pressure matching (Equation (3.22)) Ak
i

Ak+1
j

parameters L and R, as illustrated in Figure 2.8. Then we can estimate the new diagonal
Hessian entry for this shape controller from the old diagonal entries of its neighbors:

Hk+1
j,j = (1� u)Mj

LHk
L,L + uMj

RHk
R,R (3.25)

where u is the fraction of the distance between L and R at which j is located. If the shape
control is refined at midpoints instead of being skewed or biased in one direction, then
u = 0.5. The term M encodes dependence on the shape and size of the deformation
modes. Appendix B.3 shows that its form depends on the objective function and derives
it for two functionals: geometric shape matching (GSM) and surface pressure matching.
Table 3.1 shows how these can be expressed approximately in terms of the shape modes’
characteristic dimensions (recall Figure 3.3). For a parameterization with compact support,
the deformation modes’ footprints become narrower with refinement. In the limit as A! 0,
MGSM ! 0 while MP ! •. The latter is reflective of the ill-conditioning of aerodynamic
optimization with high-frequency shape modes [112].

In addition to the assumptions listed in Section 3.2.2, this prolongation operator as-
sumes that physically adjacent parameters have similar Hessian entries. This implies the
existence of a continuous Hessian which varies smoothly along the surface.11 Despite these
assumptions, Equation (3.25) is reasonably accurate, as shown next.

To verify the prolongation, consider an airfoil pressure-matching problem. (This prob-
lem is examined in more detail in Section 5.2.) Note that while the indicator derived for
this problem assumes that the pressure profile is sufficiently close to the target, for this

11At shocks, the Hessian (and gradient) can change discontinuously. In these cases, the linear interpolation
“smears” through the jump. On the other hand, Telib et al. show that in transonic flow, oscillations in the
Hessian can arise from fine discretizations [113], and that coarser discretizations of the Hessian can actually be
more representative than finer ones.
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Figure 3.4: Hessian diagonal for 2D inverse pressure matching on airfoil at various shape control
resolutions. Left/right segments on each plot correspond to camber/thickness. Trailing edge is at the
center, leading edge on either side.

test, the baseline is substantially far from the target (see Figure 5.11). Each curve in Fig-
ure 3.4a shows the Hessian diagonal computed at a different shape control resolution. In
order to eliminate any errors due to the quasi-Newton approximation, and evaluate the
prolongation operator in isolation, the Hessians were computed by finite differencing the
adjoint-derived gradients. Figure 3.4b shows the same curves, but transformed by MP from
Table 3.1. As the shape control is refined, the Hessian diagonal is approaching a smooth,
continuous distribution. The scale term for pressure matching technically applies only near
the target. The accurate performance in this example indicates that this constraint may be
relaxed. Additionally, Appendix B.3.1 shows that it is quite accurate for other 2D surface
pressure-based objectives, including drag and lift, and is not unreasonable even for a 3D

off-body pressure-matching functional.
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3.4 Adaptation Strategy

The previous sections developed a refinement indicator to evaluate the effectiveness of any
given combination of design variables. I now present a strategy for efficiently searching for
an effective parameterization. The following section shows that this is a combinatorial op-
timization problem. Although no PDE solutions are required, an exhaustive search to find
the globally ideal parameterization would still require O(NDV !) gradient projections. To
control the cost of the adaptation process, I develop an approximate constructive algorithm,
which reduces the asymptotic complexity to O(N2

DV) gradient projections.

3.4.1 Non-Separability of the Indicator

It would be convenient if each candidate parameter could be assigned a priority indepen-
dently of the other parameters. The indicator would then be local, and we could simply
add the top-ranked fraction of candidates to the active set of design variable. This type of
adaptation procedure is straightforward and inexpensive and is frequently used in discrete
mesh adaptation approaches (e.g. [114, 115]). For this to be possible, the indicator would
need to be separable, i.e. expressible as a linear combination of the shape control:

I(C0 [ C1 [ ...)
?⇡ I(C0) + I(C1) + ... (3.26)

This is invalid for two reasons. First, the indicator is a nonlinear function of the set of shape
modes, due to both the Lagrange multipliers (Equation (3.18)) and also the off-diagonal
terms of the Hessian, which inextricably couple the shape modes. Incorporating this infor-
mation on redundancy would be necessary for overlapping deformation modes. However,
even under our assumption of non-overlapping modes, candidate design variables may be
overlapping, if we are searching more than one level deep in the tree (see Section 2.3). An
example of this will be seen in Section 5.1.2. The second major reason why Equation (3.26)
is invalid is that the shape modes are themselves a nonlinear function of the shape control
via the parameterization function P , as illustrated in Figure 3.1. The same candidate can
thus induce different deformation modes, depending on the location of the other shape
controllers. Though it might happen that Equation (3.26) is a reasonable approximation in
certain cases, we cannot rely on this for a system that is expected to work with arbitrary
parameterization techniques.

In contrast to the typical localized approach to discrete mesh adaptation, finding the
best ensemble of shape parameters is therefore a combinatorial optimization problem. De-
spite the relatively low cost of a single indicator evaluation, an exhaustive search quickly
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becomes prohibitive: there are O(NDV !) possible combinations of candidates to consider.
This complexity was bypassed in [111], by adding only one new parameter at a time — a
severe restriction that leads to poor computational efficiency. Simple non-exhaustive proce-
dures like random sampling are highly unlikely to find a good combination of parameters
without very many samples. Metaheuristic search procedures such as evolutionary opti-
mization [116] might be more likely to find a globally optimal combination of parameters,
but would likewise require extremely large numbers of indicator evaluations.

3.4.2 Approximate Constructive Adaptation Procedure

To control the cost of the adaptation procedure, I use an approximate constructive (“greedy”)
selection procedure, illustrated in Figure 3.5. The goal is to find an effective parameteriza-
tion for low cost, rather than spend an exorbitant amount of time to find the ideal param-
eterization. I believe this is a well-justified trade, especially in the context of progressive
shape parameterization. At worst, a suboptimal parameterization will only temporarily re-
duce the efficiency until the next refinement. For applications where finding a truly optimal
set of design variables is imperative, global search procedures should be investigated.
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Figure 3.5: Approximate constructive refinement procedure

The constructive adap-
tation procedure is given
explicitly in Appendix A,
Function 5. In the first
phase, an initial ranked
priority queue of can-
didates is generated by
computing the indicator
value for each possible
introduction of a single
new parameter. Thus
the priority of each candi-
date is the additional po-
tential that it would add over the existing parameters. Usually this potential will be strictly
increasing, except when a candidate shape controller cancels the potential due to another.

In the second phase, the system makes consecutive passes over the priority queue,
adding the highest-ranked parameter on each pass. However, to account for the nonlinear-
ities described earlier, the candidates in the queue must be re-evaluated in the context of
the already-added parameters. To control the cost, only a window of the top few remaining
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candidates (Nw) is actually re-evaluated. Afterwards the queue is resorted, the top-ranked
parameter is added, and the next pass begins.

Cost and Accuracy

This procedure is motivated by the expectation that similar parameterizations will offer sim-
ilar potential, and is therefore most effective when the priority queue remains substantially
similar from pass to pass. For cases where there is little redundancy among candidates,
this is a reasonable assumption, and the procedure often finds the global optimum at a
fraction of the cost of an exhaustive search. Section 5.1 gives a counterexample, where there
is high redundancy among the candidates, and this procedure yields less optimal results.
The choice of Nw strikes a balance between dedicating more resources to search for a more
effective parameterization vs. starting to make design progress immediately, but in a less
effective search space. If the initial priority queue is trustworthy, one could use a window
size of Nw = 0, which is equivalent to accepting the approximation in Equation (3.26).

Appendix A shows that the upper bound on the cost of the entire refinement procedure
is O(N2

DV) shape sensitivity computations and O(N2
DV Ny) adjoint inner products, where

Ny is the number of adjoint solutions involved. The cost also scales linearly with Nw and
exponentially with depth of candidates considered d. The wall-clock time additionally de-
pends on the speed of the frequently-invoked geometry modeler and gradient projection
tools. Typical running times for the refinement procedure are equivalent to no more than
a few design iterations, which is usually far outweighed by the savings resulting from
reducing the search space dimension. However, at very large numbers of design variables,
the O(N2

DV) cost may begin to become problematic. This cost appears to be irreducible,
due to the non-separability of the indicator computations. Fortunately, the process can be
parallelized, and it is not uncommon for a case to be run on O(NDV) parallel processors.
The parallelization can happen at several levels: first, over the candidate refinements; sec-
ond, over the design variables and design functionals; and third, the gradient projection
tool itself may be a parallel code.

3.4.3 Growth Rate

The uniform refinement strategy involved only one tuning parameter, namely the trigger,
discussed in Section 2.4.1. Adaptive refinement now introduces an additional parameter,
the relative growth rate in the number of design variables, which has a critical impact on
performance. The optimal growth rate depends on the problem, as shown in Figure 3.6.
For more complex problems, such as the 3D supersonic boom-signature matching design
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problem to be considered in Section 5.3, slower growth rates can prove to be faster overall.
As shown in Figure 3.6a, an intermediate growth rate of 1.5⇥ solidly outperforms both a
slower growth rate (adding one parameter at a time) and uniform refinement (equivalent
to 2⇥). The curve labeled “Adaptive (add 1)” is an important cautionary note. Even
with accurate adaptation, an inappropriate growth rate can result in significantly worse
performance than simple uniform refinement.

For simpler problems, higher growth rates tend to be more efficient. An example of
this is shown in Figure 3.6b, which shows averaged objective convergence for a randomly
generated sampling of 2D geometric shape-matching problems. Here, the well-behaved
design space allows rapid and reliable design improvement, regardless of the number of
design variables, and thus fast growth rates are favored. Note that these examples involve
only one-dimensional refinement of the shape control. Adaptation becomes even more
critical for optimization of an entire surface, where uniform refinement would increase
NDV by a factor of 4⇥ at every refinement, rather than 2⇥.

Although the designer could manually preset the growth rates, this is an unintuitive
task that nevertheless has a major impact on efficiency. This provides a strong incentive to
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develop a method for automatic growth rate determination. The optimal rate is difficult
to know a priori and varies considerably from problem to problem, and perhaps also from
level to level of shape control.
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Figure 3.7: Reduction of indicator with addition
of shape control. The refinement procedure has
been terminated after consecutive new shape con-
trollers (green) demonstrated consistently dimin-
ished priorities (r = 0.1, w = 3).

To automatically determine an appropriate
growth rate, I monitor for diminishing ex-
pected returns on the addition of succes-
sive new parameters. During the construc-
tive refinement procedure (Function 5), pa-
rameters are added one at a time, gradu-
ally increasing the search space’s potential
for design improvement DJ?. The indi-
cator I (Equation (3.3)) directly measures
how much potential each candidate adds.
By monitoring the history of I with adap-
tation, we can watch for diminishing re-
turns. Once the indicator values decrease
sufficiently, it can be inferred that adding
more parameters would not be worthwhile.

This approach is directly analogous to
the TRIGGER(·) function in Section 2.4.1,
and I apply the same logic here. The differ-
ence here is that DJ? is monotonically increasing,12 so there is a sign reversal. Adaptation
is terminated once

Ii
I1

< r

Setting the cutoff factor r for the slope-trigger constitutes a crude but effective cost-
benefit analysis. Adding each new design parameter is assumed to incur some fixed cost,
due to adding a dimension to the search space. When the incremental benefit of adding
successive parameters becomes not worth the incremental cost of adding the parameter,
then the selection process should be terminated, and optimization resumed.

Generally speaking, Ii will decrease as more parameters are added, but when there is
high interdependence among the parameters, it may not decrease monotonically. This can

12This is because Algorithm 5 only enacts refinements that increase the potential. For an arbitrary refinement,
the potential could possibly decrease.
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Figure 3.8: Performance of automatic growth vs. fixed growth rate on 2D inverse design example
(more details in Section 5.2). Each curve indicates a different refinement strategy. Each datapoint
indicates the best objective value attained within a suboptimization level of Algorithm A.

be seen in Figure 3.7, where a cluster of parameters forms a second peak in the greedy search
history. The mode shapes for these shape control elements were less valuable in isolation,
but after the addition of other shape controllers, their mode shapes were modified into
more effective shapes, and thus their priority was higher in the new context. Following the
approach in Section 2.4.1, I use a smoothing window w to avoid terminating the adaptation
too early. However, w should be moderately small to avoid adding many extra parameters.
I found w = 3 or w = 4 to work well for most cases.

Figure 3.8 evaluates this approach on a pressure-matching objective. Each plot shows
convergence with respect to the number of design variables. In each case, the automatic
strategy performs comparably or substantially better than fixed growth rate strategies in
terms of minimizing the number of design variables. How this translates into wall-clock
time savings will be considered in the results section.

Having an automatic growth rate might also provide a solution to another important
question: how many shape parameters to start with. Starting with a truly “minimal” search
space usually leads to stunted progress early on. It is usually more efficient to start with
a moderate number, though the precise number is problem-dependent. To automatically
determine this, Algorithm A could be modified by adding a pre-refinement stage before the
loop begins. An single initial flow solve (with adjoints) would be performed, immediately
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followed by an adaptive refinement to determine a good initial parameterization.

3.4.4 Regularity

Requested

Root

Prerequisites

H

8

H

4

Figure 3.9: Regularity prerequisites for air-
foil parameterization. Addition of the re-
quested parameter (in purple) would lead
to excessive variation in parameter spacing.
The system automatically adds its two pre-
requisites. One of those, in turn, requires ad-
dition of a third parameter.

Even if the indicator is computed with exact
Hessian information, with no simulation error,
and in a perfectly smooth design space, it is still
only a local second-order expansion. It is there-
fore important to develop an adaptation strat-
egy that will be robust to nonlinearity in the de-
sign space. To this end, I impose a set of heuris-
tic refinement regularity rules, illustrated in Fig-
ure 3.9. Before adding a shape controller C, the
following prerequisite controllers must also be
present:

1. C’s parent

2. The Nth “ancestor” of each of C’s nearest equal-depth neighbor addresses to the left
and right.13

3. (For certain deformers) The Mth “ancestor” of the slot opposite C.

If any are not present, they are automatically added. Alternatively, one could ignore pa-
rameters missing their prerequisites, as in [106]. However, the growth rate can severely
stagnate under such an approach. Highly effective design variables can be precluded
merely because the system is not able to see the importance of adding their prerequisites.

The rules are applied recursively, as shown in Figure 3.9. If there are multiple trees, then
at least one new parameter should be added to each tree per cycle. Any added prerequisites
are removed from the priority queue to avoid redundant indicator evaluations.

The first two prerequisites enforce N-regularity of the parameter spacing, prohibiting
large discrepancies between the refinement depth at adjacent regions on the surface. For
most parameterization techniques14, irregularly spaced shape control yields irregularly
shaped deformation modes, which can result in non-smooth design trajectories and slow
convergence. Enforcing some degree of regularity makes the entire process more robust,
although it is necessarily suboptimal from the standpoint of finding a minimal number of

13For example, with N = 2, to add shape controller LLRR requires LL and LR.
14Specifically, any technique with local support and variable mode width. This includes almost all techniques,

with the exception of algebraic bump functions.
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design variables. Prerequisite (3) is advisable for volumetric deformers that modify two
independent sides of the same surface. For example, for airfoil parameterization, the shape
control can be divided into separate trees for the top and bottom surfaces. If using free-form
deformation, or radial basis functions whose distance is measured in Euclidean space (not
along the surface), I apply this third prerequisite, which prevents excessive discrepancies
between the resolution of the shape control of opposite regions. The precise degree of
irregularity to allow depends on the robustness of the entire design suite (optimizer, flow
and adjoint solver, geometry modeler); for this work, I used a strict value of N = 1 and,
when applicable, M = 1.
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Figure 3.10: Parameter A will not be prioritized,
because its net influence on the objective is zero.
This conceals the potential for improvement of-
fered by its higher resolution children, A’, B and
C. The regularity rules alleviate this situation by
ensuring that A will eventually be added.

Taken together, these rules help ensure
that sufficient refinement will fill the shape
control trees. Deep refinement in one re-
gion will be buffered by adding parameters
to adjacent regions. This process eventually
propagates through the full tree, so that the
adaptation will converge to the continuous
shape control problem.15 Even for perfectly
smooth flow solutions with negligible dis-
cretization error, this feature can be essen-
tial. Under the discrete refinement mechan-
ics I use, it can easily be the case that a vis-
ible candidate would not itself be helpful,
while its children would be very helpful. It
is possible to imagine the pathological situ-
ation illustrated in Figure 3.10, where such
a candidate might never be added, and thus
the potential of its children would never be
realized. The regularity rules are one way
to preclude this situation.

15The regularity rules do not change the possibility that any given optimizer may not be able to actually
navigate the design space, perhaps due to non-smoothness or inaccuracies. The rules merely avoid limitations
due to myopic adaptation.



CHAPTER 4

GEOMETRY MODELERS

The geometry modeler is often carefully crafted for specific design tasks and may constitute
a repository of design experience and best-practices. The present work therefore aims to
develop a “modeler-agnostic” system; discussion of any particular geometry modeler has
therefore been deliberately avoided to this point. This chapter now addresses the most
important aspects of preparing a geometry modeler for use with adaptive parameterization.
It also discusses how the choice of shape control basis can impact efficiency. Finally, it
introduces specific discrete deformation techniques that will be used in the results chapters.
One of these involves non-invasive retrofitting of an existing modeler that was not initially
designed for progressive parameterization.

4.1 Background

At a high-level, every geometry modeler is either a constructor or a deformer. In the con-
structive modeling paradigm, a geometry is built from scratch according to a sequential
recipe. Familiar constructive modeling elements include B-splines, Bernstein polynomials,
Bézier curves, NURBS surfaces, and class/shape functions, all of which are used widely in
aerospace design, either individually or as part of larger modeling libraries [47, 77, 108, 117–
119]. Although their proprietary nature is often lamented, CAD modeling tools are some-
times used directly for optimization when necessary to maintain consistency with a broader
design environment [117, 120–124].

53
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Figure 4.1: Deformation of discrete geometry

Deformational approaches encode modifica-
tions to a fixed baseline geometry. In these
approaches the baseline geometry is described
as a discrete surface, such as a triangulation,
as pictured in Figure 4.1a. Familiar exam-
ples used in aerodynamic design include bump
functions [7, 125], various volumetric deforma-
tion techniques [126] including free-form de-
formation [5, 118, 127–134], cage-based defor-
mation [135], plates-and-shells analogies [136],
subdivision surfaces [80, 137], radial basis func-
tions [138–141], and constraint-based deforma-
tion [130, 142]. Some of these approaches are
illustrated in Figure 4.1b.

Except where noted, the motivating argu-
ments and the final system are mostly compat-
ible with either deformational or constructive
modeling approaches. For this work, however,
I use a discrete deformation approach. This
choice is motivated by many factors. First, in
deformational approaches, the complexity of
the shape is decoupled from the complexity of
the shape control, enabling low-dimensional op-
timization of geometrically complex shapes [57,
143]. Second, the shape control can be changed
flexibly, while seamlessly preserving the geom-
etry. Third, it enables study of a vast number
of “legacy” geometries, where no recipe-based
model exists. Finally, there are a number of pow-
erful, scriptable, and extensible discrete geom-
etry manipulation tools developed by the computer graphics industry. These tools can
be leveraged directly for aerodynamic design, unlocking a wealth of surface manipula-
tion techniques, and enabling rapid prototyping of new techniques. These tools also have
mature graphical user interfaces that enable interactive preparation for automated shape
optimization.
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4.2 Requirements for Progressive Parameterization

This section discusses some of the hard requirements and services that a geometry modeler
must provide, beyond those necessary in a standard design framework. For non-adaptive
(uniformly-refined) progressive parameterization, the main restriction on the parameteri-
zation technique is that coarse refinement levels should be representative of finer levels, as
discussed in Section 2.1.2. Most parameterization schemes satisfy this requirement. Some
rare exceptions include deliberately low-dimensional fixed-parameter schemes such as
PARSEC [144] or the approach in [145].

Lack of authority to modify a parameterization does not necessarily preclude the use
of progressive parameterization. In these cases, we might apply dimension reduction
approaches, as in [81]. However, it must be ensured that the various search spaces are
consistent with each other, otherwise there may be no acceleration in design improvement,
as happened with the Rosenbrock function in Section 2.1.2.

Automatic Generation and Refinement of Search Spaces

Consider a standard gradient-based shape optimization framework where the geometry
modeler must:

1. Before optimization: Provide a list of available design variables, possibly with hard
lower and upper bounds.

2. During optimization: Given any set of parameter values X, generate a surface, op-
tionally annotated with the shape derivatives ∂S

∂Xi
for each design variable.1

A geometry modeler integrated with a shape optimization framework likely already satis-
fies requirement (2). Moving to progressive parameterization requires that (1) be automated
as well.

The geometry modeler must also implement one additional function:

• P(S, C) — Generate a deformation function D and a set of design variables X from
any set of shape control refinement locations C (Equation (2.2)).

This function represents automation of the traditionally manual task of re-parameterization.
The details of this method depend on the geometry modeler, but typically involve mod-
ifying control parameters and settings. More concrete examples are given in Section 4.4,
which discusses some specific geometry modelers.

1Shape derivatives can also be computed automatically by finite differencing.
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It is assumed that any combination of the candidates yields a valid parameterization.
If for some reason this is not true, then the modeler should silently resolve the conflict,
returning the “closest” valid parameterization. As discussed in Section 3.4.4, to prevent the
adaptation from stagnating, it is most efficient to err on the side of adding missing prerequi-
sites, rather than omitting parameters without their prerequisites. A more involved system
might keep track of dependencies and attempt to resolve them automatically. However,
in situations where many combinations are invalid, this could lead to an algorithmically
challenging space to navigate. Moreover, one would then need to explicitly codify the
modeler’s internal logic, which can not always be done in a straightforward manner.

Supporting Adaptation

To support localized adaptive parameterization, the shape control must be redistributable,
to focus higher resolution on certain regions of the surface. Some techniques, although
supporting progressive sequencing, do not support such localized adaptation. A good
example is Bernstein polynomials (and thus class/shape parameters). These offer control
over the number of polynomial basis functions to use, but not over their spatial distribution.

My approach also requires that the deformation modes be “spatially organized” and
representable in binary tree form. It would not be particularly straightforward to define
notions of adjacency and spatial organization for certain vector interpolation schemes such
as [1, 4]. These exceptions aside, most modeling techniques support localized adaptation.

4.3 Implications of Shape Control Basis

In this work I leave the choice of shape control basis and geometry modeler to the designer.
Nevertheless, this choice does have major implications, some of which are not obvious.
Many authors have discussed various desirable qualities, including smoothness, compact-
ness, intuitiveness, and orthogonality [4, 108, 132, 136, 146–152]. To this discussion, I add
two more considerations that are specifically relevant for progressive parameterization.

4.3.1 Mode Shapes

Parameterization techniques can be roughly characterized by their “radius of support”, as
depicted in Figure 4.2. At one extreme, there are methods that involve highly-overlapping
deformation modes that span the full extent of the shape. Examples include Hicks-Henne
bump functions and Bernstein polynomials. At the other extreme are bases that consist
of disjoint or slightly overlapping modes, such as radial basis functions or other forms of
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interpolation. These are essentially Galerkin discretizations of the shape control. Falling
in between these extremes are various bases with compact support, such as free-form
deformation lattices and B-splines. Hierarchical parameterization (e.g. with Fourier basis
functions) can use both types at once.

This characteristic has implications for computational cost that are not immediately
obvious. Chaigne and Désidéri investigate how the stiffness of the optimization depends
on the shape control basis [79]. Deformations are globally smoother when using fully
overlapping modes, which can substantially improve the speed and robustness of the
optimization, because there are fewer evaluations of noisy design perturbations [153].

As more and more fully overlapping shape modes are added to the search space, it be-
comes more and more difficult to discern between the effectiveness of adjacent parameters.
This is manifest in the density of the Hessian matrix. Let us assume that the continuous
Hessian operator H is diagonal. (This appears to be the case at least for 2D aerodynamic
functionals). For completely non-overlapping shape control, i.e. a Galerkin-type finite
element discretization, the Hessian matrix would then be diagonal. Because introduction
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of geometric discontinuities is almost universally undesired in aerodynamics, there is usu-
ally some amount of smooth overlap involved in interpolation. Thus, when the design
variables are sorted in spatial order, the Hessian is a band matrix (see Figure 4.3a), with the
width of the band determined by the interpolation stencil or radius of support. For fully
overlapping modes, the Hessian matrix is dense (see Figure 4.3b).
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Figure 4.3: Dependency of Hessian den-
sity on shape mode overlap. Global and
local shape modes lead to denser and
sparser Hessian matrices, respectively.
This plot assumes that H is diagonal.

This difference in Hessian structure has two
implications for the present work. First, we of-
ten make the assumption that the diagonal of the
Hessian encodes most of the information needed
to make better predictions about which parame-
ters have the most long-term design potential. Us-
ing highly overlapping modes means that the off-
diagonal will also be significant. Second, even if
the Hessian were computed perfectly accurately,
with global modes there is also more redundancy
among candidate parameters. In the approximate
constructive refinement procedure developed in
Section 3.4.2, the accuracy is degraded by high re-
dundancy, unless the sliding window Nw is en-
larged, which renders the adaptation procedure
more costly.

4.3.2 Neutral Shape Mutation

Ideally, the modeler should ensure that the shape is invariant with respect to the shape
control, so that Sk

f inal ⌘ Sk+1
0 , i.e. a “neutral shape mutation” [86]. This is important firstly

for efficiency. Any shape change that is not optimizer-driven is likely to hurt the perfor-
mance of the design, thus incurring a temporary setback. In certain previous approaches
to progressive parameterization with constructive modelers, the design variables in the
refined parametric definition are approximately re-fit to at least minimize the unavoidable
jump [77, 81]. In other approaches, a more efficient exact degree-elevation procedure is
used [47, 50].

Neutral shape mutation is also essential for computing the refinement indicator. As
discussed in Section 3.3, the efficiency of that process requires reuse of existing adjoint
solutions to evaluate gradients with respect to hypothetical design variables. Any shape
change invalidates the reuse of previous adjoints, as even subtle shape changes can lead to
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utterly different flow solutions and functional gradients. Thus for the indicator used here,
neutral shape mutation should be considered mandatory.2

With the discrete geometry deformation approach used in this work, the shape can
always be preserved exactly when refining the shape control. This is an intrinsic feature of
discrete deformation; we can re-establish the previous optimal discrete surface Sk

f inal as the
new baseline Sk+1

0 . For discrete geometry approaches, it is also important to consider the
resolution of the surface tessellation, which

• Imposes a limit on the finest allowable level of shape control.

• Impacts the accuracy of the flow solutions.

• Affects the expense of computing surface deformations and projecting the gradients.

The simplest approach is to endow the baseline surface with enough resolution to support
the entire sequence of optimizations. If it is necessary to modify the surface discretization
during optimization, this must occur outside the adaptation procedure.

For the adjoint projection tool used in this study, the discrete surface must also have the
same mesh connectivity. Mesh topology is intrinsically preserved by discrete deformation
techniques. For constructive modelers that regenerate the discrete surface on demand, this
is not necessarily guaranteed, even if the underlying shapes are geometrically identical.

4.4 Discrete Geometry Modeler

For all the evaluations and examples in Chapters 5 and 6, shape changes are made by de-
forming discrete surface triangulations. Shape manipulation is handled with a standalone
modeler for discrete geometry, implemented as an extension to an open-source computer
graphics suite called BLENDER. This platform was developed and validated in previous
work [132, 142]. It allows BLENDER to serve as a geometry engine for shape optimization,
providing on-demand deformations and computing analytic shape sensitivities. It has been
used to support aerostructural analysis and design [154, 155] and adaptive parameteriza-
tion [94, 98]. For this work I developed custom deformation plugins for this platform.

To deform curves (such as airfoils or other cross-sections), I use a “direct manipulation”
approach, illustrated on the airfoils in Figure 4.4. The deformation of certain “pilot points”
placed along the curve are directly manipulated and serve as the design variables. Defor-
mation of the remainder of the curve is smoothly interpolated using radial basis functions

2If it were imperative to use a particular geometry modeler that cannot preserve the shape exactly, one might
simply accept the errors due to using the adjoint solutions for a slightly different shape. With the regularity
rules discussed in Section 3.4.4, the overall process would at least remain convergent.
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(RBF). Derivations of the RBF deformation technique for aerodynamic design are given
by several authors [130, 138–140]. Each parameter has a bump-shaped deformation mode
that is mostly confined to the region between its neighboring points, while maintaining
smoothness. I chose the basis function f = r3 here, primarily because it requires no local
tuning parameters, making it more amenable to automation, but other bases may have
superior properties [138]. In the notation of Section 2.1, the shape control C is the para-
metric locations of the pilot points along the airfoil curve. Function PRBF(C) “binds” these
pilot points to the remainder of the curve, resulting in a deformation function D(X), which
takes the pilot point deflections X and generates a new curve. For binary shape control
refinement, adjacency and midpoints are defined in terms of arc-length along the curve.

To deform wings and similar components, I interpolate twist, sweep, scale (affecting
thickness and chord) and airfoil deformations between spanwise stations, as illustrated in
Figure 4.4. The twist and scale are taken about a user-defined, segmented axis, usually
placed either at the leading or trailing edge, quarter-chord line, or elastic axis. At each
station, a curve deformer modifies the airfoil shape, after which the twist, scale, and sweep

Refinement of 
shape control

Pilot points

Twist
Scale

Sweep

2D radial basis functions

Figure 4.4: Wing deformation model
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are applied (in that order).
Interpolation of each deformation class happens independently, allowing the shape

control to be refined anisotropically. Similarly, each station can provide different resolution
of control over the airfoil shape. To refine the shape control, more spanwise stations may
be added, or new pilot points may be added at different stations.

Using the notation of Section 2.1, the shape control C is a vector containing

1. The spanwise location of each control station.

2. For each control station: the parametric location along the curve of each pilot point.

Function Pwing(C) generates the deformation function D(X), which takes all of the shape
parameters X and generates a new wing shape. The shape parameters include

1. The twist, chord, and sweep at each station.

2. For each control station: the deformation of each pilot point.

The shape control is organized in multiple independent trees, corresponding to control
of twist, sweep, and chord. Airfoil section control is organized as a “tree of trees”. The
top-level tree organizes the spanwise locations at which the airfoil can be controlled. At
each of these locations, a subtree organizes the pilot points.

4.4.1 Wrapping an Existing Modeler

Background

• Variable Camber Continuous Trailing Edge Flaps 
(VCCTEF) concept previously applied to Generic 
Transport Model (GTM), both experimentally1 and 
computationally2 

• GTM model had 14 flaps, each with 3 segments 
and elastomer between all flaps 

• VCCTEF found to improve 
performance both at cruise 
and off-design

4

1Nguyen et al., “Experimental Investigation of a Flexible Wing with a Variable Camber Continuous Trailing Edge Flap Design,” AIAA 2014-2441, June 2014.

2Rodriguez et al., “Optimized Off-Design Performance of Flexible Wings with Continuous Trailing-Edge Flaps,” AIAA 2015-1409, January 2015.(a) One possible flap system built using the mod-

eler. Blue regions are flaps, gold are joining elas-
tomer material.

Figure 13. Consequently for the optimization work, the 
segments of each individual flap were assumed to be 
directly linked in this circular fashion. This linking of 
the flap segments models a camber change while mostly 
utilizing all three segments of any flap. 

Linking the segments of each flap still results in 16 
possible flap deflections. In the end, the optimal flap 
deflection is expected to be smooth in the spanwise 
direction, especially outboard of the planform break and 
since no flow separation is expected at cruise. 
Consequently, the fourteen smaller outboard flaps are 
deflected using smooth shape functions instead of 
deflecting them individually. The shape functions used 
for this work are Bernstein polynomials of degree 3 
(shown in Figure 14). These polynomials were selected 
mostly because any one of them could be a reasonable 
shape of the spanwise flap-deflection distribution. 
Another attractive feature is that the Bernstein 
polynomials of any lower degree (such as a straight line) 
can be exactly represented by these polynomials. 

The deflection of the inboard flap, because of its 
sheer size, was left as an independent design variable. 
The aileron deflection also remained a separate variable 
since it is significantly larger than the other outboard 
flaps. By using the shape variables in Figure 14 and 
enforcing circular deflection of the individual segments 
of any flap, the VCCTEF deflection was modeled using 
only 6 design variables, a significant reduction from 48. 

B. Design and Off-Design Conditions!
As discussed at the beginning of this section, the first step in this work was to optimize the wing at a single 

design condition to establish a new baseline. A typical simple mission for the GTM is shown in Figure 15. All of the 
work presented is concerned with the cruise segment only. For the entire cruise segment, the aircraft is assumed to 
fly at a constant altitude of 36,000 feet and Mach number of 0.797. To establish a baseline design that is expected to 
perform well at all cruise conditions, the design point chosen is the mid-cruise point shown in blue in Figure 15. At 
this flight condition, the aircraft is assumed to carry 50% of the maximum fuel load. Two off-design conditions at 
the beginning and end of the cruise segment were chosen for Step 2 of the Optimization Procedure. At begin-cruise, 
shown in green in Figure 15, the aircraft is assumed to carry 80% of the maximum fuel load. At end-cruise, shown in 
red, the aircraft carries 20%. 

Because altitude and flight speed are assumed 
constant throughout cruise, the only parameter that 
varies between the design and off-design cases is the 
weight of the aircraft. The weight of the wing, the 
engine, and the fuel all apply direct loads to the aircraft 
structures in addition to the aerodynamic loads. To 
model this effect, a wing-structure weight distribution 
was included in all aero-structural analyses. Likewise, 
the fuel load in the wing was included in the model. 
These load distributions are plotted in Figure 16 over a 
silhouette of the aircraft wing. Note the strips of 
triangles used to transfer loads from the wing surface to 
the structural model are shown. More details of this 
procedure are given in Reference 3. The loads were 
assumed to act through the elastic axis of the wing 
structure and hence did not produce a torque. A point 
load was also added to include the weight and thrust of 
the assumed single engine on the semispan of the wing. 
The spanwise location of this point load is also shown in 

!  8
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Figure 13. “Circular deflection” of a 3-segmented flap.

Takeoff Landing

Climb Descent

Cruise @ 36,000 feet

Mach 0.797

Loiter

Mid-Cruise

50% fuelBegin-Cruise


80% fuel
End-Cruise

20% Fuel

Figure 15. Typical GTM mission profile. The three flight 
conditions analyzed are shown in red, blue, and green.

Figure 14. Bernstein polynomials (degree 3) used as 
shape variables for the outboard flap deflections. Each 
color represents a different variable.
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Figure 4.5: Trailing edge flap system modeler (fig-
ure from [155])

The previous two parameterization tech-
niques were specifically developed to sup-
port adaptive parameterization. However,
it is also possible to non-invasively wrap
an existing modeler to support adaptive
parameterization, e.g. via design variable
linking. For modelers where the parameter-
ization is specified in non-proprietary con-
trol files, this is simply a matter of creating a
script-based interface to automatically mod-
ify these files.

As an example, consider the modeler in
Figure 4.5a, which enacts trailing edge flap
deflections on a transport wing. This sys-
tem was developed by Rodriguez et al. to
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assess the potential performance benefits of a variable-camber, continuous trailing edge
flap system on a transport wing [155]. The modeler cuts a highly-flexible flap system out
of a wing, allowing the flap deflections to be optimized for different flight conditions. The
modeler supports arbitrary spanwise spacing of flaps and also allows each flap to be seg-
mented, as shown in Figure 4.5b. Flap systems with fewer moving parts can be modeled
by linking the flap deflections both spanwise and streamwise. I leverage this modeler in a
later design example (Section 6.4). In that example, I start with a large set of flaps provided
by the modeler. I then automatically link all of the flap segments into two monolithic flaps.
Thereafter, flap refinement is performed by adaptively unlinking the parameters, which
exposes more degrees of freedom and allows modeling of more complex flap systems. In
this case, no modification to the underlying modeler was required.



CHAPTER 5

EVALUATION AND VERIFICATION

This section validates the adaptive shape control system developed in Chapter 3. Three
inverse design examples of increasing complexity are considered. For each case, the contin-
uous target is attainable only with continuous shape control. The system is initially given a
naive coarse parameterization and must automatically determine parameters that are suf-
ficient to solve each problem. In the process, the refinement indicator and the adaptation
strategy are verified and evaluated in isolation. I also evaluate robustness with respect to
initial conditions and the refinement strategy. After following different trajectories through
the design space, all paths consistently coverge to the same fine-space optimal design.

5.1 Geometric Shape Matching

This first verification problem involves 3D geometric shape matching, where the optimizer
drives a baseline shape to a target shape, using a given basis of shape control. The objective
function aims to minimize the point-wise geometric deviation from the target shape S⇤ in
a least-squares sense:

J GSM =
1
2

Nverts

Â
i=1
kvi � v⇤i k2 (5.1)

where vi are the current vertex coordinates on the discrete surface and v⇤i are the corre-
sponding target vertex coordinates. The purpose of this verification study is to evaluate
the adaptive procedure developed in Chapter 3 by answering two fundamental questions:

63
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1. (Section 5.1.1) Are the indicator values correlated with actual design improvement?

2. (Section 5.1.2) Can the system discover a compact set of parameters that enable the shape to
be matched?

Initial and Target Shapes

Figure 5.1 shows the the baseline and target shapes. The baseline is a straight wing with no
twist, taper or sweep, and is represented as a discrete geometry with about 197K vertices.
The target geometry is a typical transport wing with substantial twist, chord-length and
sweep profiles, as shown in Figure 5.1. For this academic example, the target sweep profile
is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic. Both wings have the same airfoil section, so this problem
considers only planform design.

4.4

Baseline

Target

Root Fixed Root

L

Chord Profile
2

0.4

1.2

Twist Profile 0

Linear LE Sweep

Baseline

1.7875

R

Target

�(y) = �y2 + 3y

LR

LRR 

Tip 
controller

LRRL 
Break Controller 

Twist Scale (fixed t/c)

Sweep

2

Figure 5.1: Shape Matching: Baseline and target planform profiles. Shape control is organized in
spanwise tree structure. At a depth of d = 4, a controller can be added at the wing break.
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Parameterization
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Figure 5.2: Shape Matching: Indicator verification:
P1: Objective convergence under initial parame-
terization. P2 and P3: Subsequent optimizations
corresponding to addition of one of the candi-
dates, starting from the previous best design.

The wing planform is parameterized us-
ing the technique described in Section 4.4,
which linearly interpolates twist, sweep
and chord between spanwise stations. Con-
trol stations can be placed anywhere along
the wing, except at the root, which is fixed.
The adaptive system must determine a com-
pact set of locations for the twist, sweep
and chord control stations that enable ex-
act recovery of the target shape. This prob-
lem is very challenging for adaptive param-
eterization, because three different classes
of shape control must be refined simultane-
ously. Each has different units and scaling,
and there is redundancy both within each
class (due to mode overlap) and among the
classes (twist, sweep and scale are not geo-
metrically orthogonal). To my knowledge
this is the first example in the literature to
consider simultaneous adaptation of differ-
ent classes of shape control.

Initially the optimizer is given three design variables: twist, chord and sweep at the
tip station. The shape is initially optimized to convergence in this 3-DV search space, as
shown by the blue curve in Figure 5.2, exhausting the potential of this search space. Further
improvement is possible only after the system adds more spanwise stations through binary
refinement of each class of shape control, as shown in Figure 5.1.

5.1.1 Indicator Verification

This section evaluates the ability of three versions of the refinement indicator from Sec-
tion 3.2.2 to predict the actual performance of the various candidate shape parameters:

• IH — The second-order indicator, which uses the nearly-exact Hessian1 (Equation (3.21))

1The Hessian is computed analytically, but the nonlinear term D in Appendix B, Equation (B.3) is neglected.
Here, the twist deformation modes are nonlinear with respect to the angle, although because the angles are
small, the resulting error is small.
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• ID — Using only the diagonal of the Hessian

• IG — The first-order indicator based on DJ⇢H
? , which uses only gradients (Equa-

tion (3.17))

Using a search depth of d = 3, Function 3 (in Appendix A) returns 21 candidate param-
eters (seven each for twist, sweep and chord). The goal in adaptive refinement is to pick the
subset of these parameters that enable the objective to converge to the lowest final value,
thus maximizing DJactual . For each candidate the system estimates the potential design
improvement using IH, ID and IG. Then 21 full optimizations are run, where only one of
the candidates is added to the active set.

Figure 5.2 shows the objective convergence corresponding to addition of each one of the
candidates. The top-ranked candidate was the chord design variable at station “LR” (green
parameter in Figure 5.1) which was as close to the essential break station as the search depth
allowed. I then added this parameter, and repeated this study once more, with a new set of
candidates. For the second pass, there were 44 candidate shape parameters — 21 on each
side of the newly added station, plus sweep and twist on the station where chord control
was added. As before, a full optimization was run for each candidate (see Figure 5.2).

Figure 5.3 correlates the predicted potential for design improvement DJ? with DJactual .
Each data-point corresponds to a candidate design variable. In each plot, the parameters
at the top right are the most effective ones. The adaptive system would prioritize them
over the relatively ineffective parameters to the bottom left. The top row in Figure 5.3 cor-
responds to IH and demonstrates nearly perfect predictions. The middle row corresponds
to the first-order predictions (IG). On the first pass, the ranking is reasonable, but on the
second pass it is extremely poor, with the highest-ranked parameters performing the worst
in reality. The bottom row corresponds to using only the Hessian diagonal (ID). In this
case the correlation is still quite reasonable, showing that accurate diagonal scaling may be
sufficient to achieve good predictions of importance.

This is a striking validation of the refinement indicator, and also a display of the im-
portance of second-order information. Previous studies have suggested using gradient
information to determine the relative importance of different candidate parameters [50, 81].
This study demonstrates that unless the problem is well-scaled, examining only first-order
information can sometimes lead to very poor predictions. On some later examples, this
conclusion will be refined somewhat. We will see that IG can provide reasonably good rank-
ings when all parameters are of the same class. The present example involves simultaneous
adaptation of three fundamentally distinct types of deformation, each having very different
second-order effects, visible in the Hessian structure in Figure 5.4. Ignoring those effects
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Figure 5.3: Shape Matching: Indicator verification: Correlation between predicted and actual design
improvement for the first (left) and second (right) refinements. Top row: IH , Middle row: IG, Bottom
row: ID

might be safe within a given class of parameters, but not across multiple shape control trees.
The Hessian naturally accounts for this scaling and corrects the predictions.

5.1.2 Evaluation of Adaptation Strategy

I now evaluate the adaptation strategy, which has major impacts on robustness and effi-
ciency. The problem is constructed such that the parameterization that allows the closest
recovery of the target with the fewest design variables is known in advance:

1. Chord: To recover the piecewise linear chord profile requires exactly one chord con-
troller at the break ( 13

32 span).

2. Twist: To approximate the quadratic twist profile with piecewise linear segments,
progressively finer twist control should be added. It should be evenly spaced to
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optimally clamp down the error.

3. Sweep: The initial controller at the tip is sufficient to recover the linear sweep distri-
bution, so no additional control is needed.

The adaptive system is not expected to find exactly this ideal parameterization. However,
it should use substantially fewer degrees of freedom than a uniform, isotropically refined
parameterization with equivalent potential. The evaluation is split into three tests, each
addressed to a specific question:

1. (Section 5.1.2) Can the indicators identify the parameters necessary to solve the problem?

2. (Section 5.1.2) What impacts the efficiency of the adaptation strategy?

3. (Section 5.1.2) Under what situations could the refinement strategy perform poorly?
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Test 1: Identifying Important Parameters

This section performs a head-to-head benchmark of using IG vs. IH as the indicator, to
compare their ability to discover the necessary parameters. The adaptation routine searches
only one level deep (d = 1) and adds only one new design parameter at a time (Nadd = 1).
This deliberately restrictive strategy allows evaluation of the indicators independently of
the approximations made by the constructive refinement procedure, which might otherwise
confound the conclusions.

Distinct refinement patterns evolve under the two indicators, as shown in Figure 5.5.
The right frame shows the pattern produced after 22 cycles of adaptation based on IH . The
resulting parameterization is almost identical to the ideal parameterization, which was
known a priori. Sweep control was correctly ignored, chord control was correctly added
at the break, and twist control was evenly spaced along the span. (The next nested level
of twist control has begun to be added near the root.) Only four extraneous chord design
variables were added, and even these were not mistakes. Under the binary refinement
rules stipulated in Section 2.3.1, the necessary station at 13

32 span was not considered a
candidate until higher levels in the tree were first added (see Figure 5.1). The adaptation
procedure did precisely this, and ultimately correctly identified and added the necessary
chord parameter at the break.

The left half of Figure 5.5 shows the results after 25 cycles of adaptation based on IG. The
refinement pattern reveals that the procedure was quite inaccurate and failed to efficiently
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capture the important design variables. Although the shape has been matched reasonably,
it is inferior to the match resulting from IH, especially in the twist profile. As before, the
reason for the relatively poor performance is related to the highly distorted scaling of the
search space. This is visible in the Hessian diagonal, which is much larger for scale and
sweep than for twist (Figure 5.4). Thus even when very close to the optimum, IG strongly
favored the chord and sweep variables because their gradients were much larger, even
though they offered only extremely short-term potential. IH , by contrast, revealed that they
in fact had low long-term potential. This again underscores the essential role of second
derivative scaling information for adaptation.

The objective convergence achieved using the two indicators is shown in Figure 5.6,
labeled “IG (add 1)” and “IH (add 1)”. IG frequently selected parameters with almost zero
potential, leading optimization to stall for several adaptation cycles. Nevertheless, it still
managed to eventually reduce the objective by over 6 orders of magnitude, indicating quite
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Figure 5.6: Shape Matching: Objective convergence with different indicators and adaptation strate-
gies. Each color represents a suboptimization, and ⇥-marks denote search space refinements. The
curve labeled “Ideal” represents the most efficient possible 35-DV parameterization.
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close recovery of the target shape. This is important; it indicates that even with a quite
inaccurate indicator, the adaptive system is still able to approach the continuous optimum.
IH, however, makes faster progress, and reaches a superior design.

Test 2: Refinement Procedure

The previous test compared two indicators, while removing the impact of the approximate
refinement procedure. Compared to the “ideal” parameterization, however, performance
is still relatively slow (Figure 5.6). It took many adaptation cycles to drive towards the
target shape, because of the excessively slow growth rate. This second test accelerates the
growth rate and search depth slightly (d = 2, Nadd = 3, using IH), which should lead to
much faster design improvement. This test is intended to evaluate the cost and accuracy of
the approximate constructive adaptation procedure develop in Section 3.4.2.

After several alternating optimizations and refinements, the process converged to a
shape match equally as good as in Test 1 (see Figure 5.6, “IH (add 3)”). Unsurprisingly, the
number of iterations required is about one third of the number required for the previous
case (“IH (add 1)”). More interestingly, for the first several levels, it outperforms even
the minimal parameterization, indicating that progressive parameterization can accelerate
optimization even if the minimal parameterization is known in advance! The system has
now added 10 non-ideal parameters, compared to four when adding only one at a time.
This is still substantially better than isotropic uniform refinement, which would have added
about 30 non-ideal parameters.

High Redundancy

Given the success of the previous two tests, we might wonder whether the system could
immediately determine all of the necessary shape control upfront. To test this I use IH and
set the refinement parameters to d = 5 and Nadd = 32, which is sufficient to allow the system
to discover the minimal parameterization. With d = 5, there are a total of 93 candidates.
An exhaustive search would involve evaluating the ⇠ 8⇥ 1024 possible combinations of
parameters. The constructive search procedure seeks an approximate solution with only
O(NDV) indicator evaluations.

The first phase of Function 5 computes an initial ranking of the 96 candidates, which
is shown in Figure 5.7. The y-axis gives the estimate of the additional design potential
that would be added to the search space by adding only the corresponding parameter. The
minimal ensemble of 32 parameters is highlighted in green. IH correctly identified the
chord station at the break as the most important shape controller to add. Initially, it appears
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Figure 5.7: Shape Matching: Test 3: Initial priority queue (d = 5, Nadd = 32, IH). The 32 parameters
that would best recover the target shape (green) are highlighted. After adding the top member of
the queue, all of the subsequent chord and sweep controllers (gray) become redundant.

that the twist variables are the least important in the queue. However, after adding the
break-chord parameter, the next 50 controllers all become highly ineffective. Their initial
appraisal was based on the absence of the break-chord parameter; they could each have
recovered much of the same design potential that it offered. The twist stations at the end of
the priority queue offer relatively little potential, but that potential is independent of the
chord control, and thus they remain useful.

The constructive procedure remains functional on this problem, but it is slow. Func-
tion 5 must work its way through all of the other chord and sweep variables until finally
discovering the more important twist control. While alternate search strategies might be
developed to handle this situation, from a practical standpoint the easiest recourse is to sim-
ply limit the depth of the search to d = 1 or d = 2, which eliminates most of the redundancy
and yields excellent performance.
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5.2 Subsonic Inverse Airfoil Design
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Figure 5.8: Inverse Airfoil Design: Target airfoil
(NACA 0012) and pressure profile. Mach 0.3, a = 1�

This study examines inverse airfoil de-
sign. The goal is to deform the airfoil such
that its pressure profile matches a target.
The objective function is a quadratic pe-
nalization of deviations from the target
profile:

J =
1
2

Nverts

Â
i=1

(pi � p⇤i )
2 (5.2)

where p⇤i is the target pressure at vertex i
on the discrete curve. The target pressure
profile (shown in Figure 5.8) is that of a
NACA 0012 airfoil at M• = 0.3 and a = 1�. While the target airfoil is symmetric, the
initial shapes are asymmetrically randomly generated, and the shape parameterization is
permitted to be refined asymmetrically. As before, the target profile is attainable, but not
under the initial parameterization. This example is split into two parts, whose primary
goals are to assess whether

1. The refinement indicator is effective for aerodynamic functionals.

2. The adaptation system is robust, in the sense that it converges to the same optimal
design independent of both the initial shape and the refinement strategy.

5.2.1 Indicator Verification

The first study parallels the indicator evaluation study from the shape-matching study in
Section 5.1.1. It is important to repeat that study, because this case introduces an aerody-
namic functional. Starting with an evenly-spaced, 14-DV parameterization, the initial shape
is optimized to convergence, as shown by the blue curve in Figure 5.9. The design improve-
ment potential of this initial search space has been fully exploited, but further improvement
is possible when more degrees of freedom are added.

This study compares the predictive accuracy of two indicators, IG and ID (Equations (3.17)
and (3.23)). To compute the diagonal of the Hessian for ID, we take the BFGS Hessian ap-
proximation from the initial search space and prolong its diagonal into each candidate
search space via Equation (3.25). Using a search depth of d = 1, Function 3 returns 16
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candidate parameters (eight each on the top and bottom surfaces).
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Figure 5.9: Inverse Airfoil Design:

Indicator verification: Objective con-
vergence under initial parameteriza-
tion, followed by subsequent opti-
mizations corresponding to addition
of one of the candidates.

For each candidate, the system estimates the po-
tential design improvement using ID and IG. Then 16
independent optimizations are run, where only one of
the candidates is added to the active set. Figure 5.9
shows the objective convergence corresponding to ad-
dition of each one of the candidates. The predicted
design improvements are then correlated with the ac-
tual observed design improvements, as shown in Fig-
ure 5.10. Using approximate Hessian information
strongly improves the absolute predictions, with the
results being closer to “ideal” (DJ? = DJactual). How-
ever, note that the two indicators provided nearly iden-
tical relative rankings, which is more important, as it
dictates which parameters to add. In contrast to Fig-
ure 5.3, here IG proved to be reasonably effective. This
is largely because in the current design example, there
is only one class of shape control and thus less extreme

Figure 5.10: Inverse Airfoil Design: Evaluation of predictions made by indicators IG and ID (with
transferred quasi-Newton Hessian approximation)
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variation in design space curvature.
Figure 5.10 shows that the rankings are non-

monotone, which indicates that they are imperfect. Based on the results from the shape-
matching example in Section 5.1.1, it is likely that the ranking could be improved further
with off-diagonal information. However, we would not expect the rankings to ever be ideal.
After all, a perfectly accurate second-order indicator is still just a local expansion of the full
nonlinear behavior. Nevertheless, the rankings are encouragingly good for both IG and
ID, which motivates the application of this method to the more complex upcoming design
examples.

5.2.2 Robustness to Inputs

Figure 5.11: Inverse Airfoil

Design: Robustness Study:
Randomly-generated initial
geometries (1-3 from top to
bottom)

The purpose of this section is to assess robustness with re-
spect to (1) the initial shape and (2) the refinement strategy.
I perform a suite of 15 adaptive optimizations: I test five
different refinement strategies, starting from each of three
initial shapes. The three starting shapes are shown in Fig-
ure 5.11. They were generated by smoothly deforming the
target NACA 0012 airfoil using 15th-order Bernstein polyno-
mials with random weights, multiplied by a Kulfan-style class
function c(x) =

p
x(1� x) that maintains the circular leading

edge and sharp trailing edge [108]. From each starting point
several refinement strategies are compared:

• Uniform refinement (growth rate g = 2⇥)

• Fixed growth rates, g = 1.5⇥ and g = 2⇥ (both with search depth d = 1)

• Automatic growth rates (r = 0.01, w = 4) at two search depths, d = 1 and d = 2.

(Explanations of these settings were given in Sections 2.3.1 and 3.4.3.)
While other examples will consider wall-clock time efficiency, this study focuses more

on the consistency of the final results and also on the asymptotic rate of convergence with re-
spect to the number of design variables. Therefore, each suboptimization level is converged
deeply.2 Each case was initialized with a minimal 2-DV parameterization to eliminate as
much initial bias as possible. In production settings, intermediate shape control levels
would not be converged so deeply, and we would start with more design variables.

2The norm of the gradients was required to decrease by 2.5 orders of magnitude.
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(b) Convergence of geometry to target

Figure 5.12: Inverse Airfoil Design: Convergence of the objective with respect to shape control
refinement. Each curve indicates a different refinement strategy. Each point indicates the best (final)
objective value attained within that level.
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Table 5.1: Inverse Airfoil Design: Asymptotic convergence rate of
J k

? � J •
? with respect to the number of design variables, for differ-

ent refinement strategies. (Rate averaged over last four levels.)

g = 1.5 g = 1.75 g =auto g =auto
case uniform d = 1 d = 1 d = 1 d = 2

1 2.6 2.6 2.2 8.3 5.0
2 2.4 3.2 3.0 5.2 5.6
3 2.7 2.1 2.3 5.7 4.7

mean 2.6 2.6 2.5 6.4 5.1

Optimization Results

Figure 5.12, left column, plots the asymptotic convergence of J to J •
? = 0, the continuous

optimal value. (Recall the discussion of this type of plot in Section 2.1.2.) Each frame
corresponds to a different starting point, and each line corresponds to a different adaptation
strategy. To establish a point of reference, convergence is also shown for some evenly-
spaced, static parameterizations.
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Figure 5.13: Inverse Airfoil Design: Conver-
gence to continuous optimum using both fixed
growth rates (orange) and automatically deter-
mined growth rates (blue). Objective values are
normalized to begin at J0 = 1, to remove the dis-
crepancy in J0 for the different starting points.

All of the convergence curves are ini-
tially almost flat. This indicates that the
coarse parameterizations are not yet in the
region of asymptotic convergence. As adap-
tation continues, all refinement strategies
begin to converge asymptotically to the tar-
get pressure profile. The right column of
Figure 5.12 verifies that the shape itself is
also converging to the NACA 0012 airfoil,
not to some hypothetical different shape
with an identical pressure profile. Such ro-
bust convergence to the continuous opti-
mum is due to two factors: (1) generally
accurate predictions of the most important
parameters to add, and (2) the imposition
of shape control regularity rules (see Sec-
tion 3.4.4), which prevent the process from
stalling in cases where the predictions are
less accurate.
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Different strategies take different routes to the optimum, and have different convergence
rates (Table 5.1). On average, all adaptive strategies eventually converge at least as fast as
uniform refinement, and usually much faster. This is the expected result, and supports the
validity of the refinement indicator and the efficiency of the refinement strategy. Because the
adaptation is approximate, it naturally makes imperfect predictions. This is evident in the
variation in the rates of convergence of different strategies. (If the indicator were a perfect
prediction, then the rate of convergence with respect to be NDV should be independent
of the strategy.) Dividing the adaptive strategies into fixed growth rates and automatic
growth rates reveals an interesting trend. Figure 5.13 compares convergence under the two
approaches. While the method for automatically setting growth rates was initially intended
to simplify the process, it appears to also consistently improve the asymptotic convergence.
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Figure 5.14: Inverse Airfoil Design: Objective con-
vergence with respect to design iteration. When
given an aggressive trigger, progressive schemes
tend to exhibit faster convergence than a static
parameterization. Adaptive refinement substan-
tially outperforms uniform refinement.

It is not surprising that adaptive refine-
ment achieves substantially faster asymp-
totic convergence with respect to NDV .
However, efficient use of design variables
does not directly imply a reduction in wall-
clock time. (Figure 5.12 conceals the cost
of each suboptimization.) Devising refine-
ment strategies that are more computation-
ally efficient than uniform refinement is ex-
amined in later examples. However, even
here we can observe computational acceler-
ation. Figure 5.14 shows convergence of the
objective with respect to major iteration for
three strategies. When given a more aggres-
sive trigger (r = 0.05), uniform refinement
outperforms a fine static parameterization
(d = 6, i.e. 256 DVS) for most of the design
trajectory.

The adaptive approach is faster yet, and
also achieves a superior design with 90
fewer design variables (166 total). It does
so by radically varying the density of shape
control across the surface. The local refine-
ment depth ranges from as coarse as d = 2
in some regions to as fine as d = 10 in others. Specifically, it clustered the shape control at
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(a) Starting point 1 (d = 1) (b) Starting point 1 (d = 2)

(c) Starting point 2 (d = 1) (d) Starting point 2 (d = 2)

(e) Starting point 3 (d = 1) (f) Starting point 3 (d = 2)

Figure 5.15: Inverse Airfoil Design: Final adapted parameterizations for each starting point, using
two auto-growth strategies.

the leading and trailing edges, as shown in Figure 5.15. This is a common technique used
by aerodynamic designers, because of the high sensitivity of flow profiles to those regions —
here it was discovered automatically. From each starting point, the system used somewhat
different parameter distributions to recover the target profile. For example, in the middle
region of the airfoil, starting point 2 used much denser control than starting point 3. Each
parameterization was generated in a path-dependent process; the discrepancies are partly
due to that. This example demonstrates that even slightly different problems can require
different parameterizations. Problems that are more starkly different would be expected to
display even more divergent and less predictable refinement patterns.

5.3 Supersonic Off-body Pressure Signature Matching

This third verification example involves reshaping a supersonic body to match a target
off-body pressure signal. This problem undergirds one effective approach to low-boom
design [156, 157]. As with the previous examples, the goal of this study is to evaluate
whether the adaptive parameterization system can approach the continuously optimal
design. This example introduces a more complex and realistic aerodynamic functional
involving a 3D flowfield and an off-body pressure signal.
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Inverse Design Approach
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Figure 5.16: Supersonic Forebody: Baseline and target
geometries and corresponding off-body pressure sig-
natures (off-body distance not to scale). Shaded region
indicates the signal deviation to be driven to zero by
shape optimization.

The objective function seeks to mini-
mize the discrepancy along a sensor be-
tween an off-body pressure signal and
a target signal:

J =
1

2p2
•

Z
(p� p⇤)2dS (5.3)

where p⇤ is the target signal and dS
indicates integration along the length
of the sensor. This discrepancy is de-
picted by the shaded region in Fig-
ure 5.16. There are no constraints
except for design variable bounds to
maintain physical, positive-radius ge-
ometries throughout design. These are
mostly inactive, including at the opti-
mum.

Figure 5.16 shows the target geome-
try, a thin body of revolution based on work by Darden [158] and George and Seebass [159]
that has been used in numerous sonic boom studies [160, 161]. Here I use a modified
version with more aft lift relaxation that was studied in the First AIAA Sonic Boom Work-
shop [161]. The Mach number is 1.6 and the angle of attack is 0�. Figure 5.16 shows the
on-track target pressure signal at 21.2 model units directly below the forebody axis. The
signal is clipped on either end so that it contains only the active portion generated by the
forebody. This clipped signal serves as the target for inverse design.

Meshing and Flow Solutions

At each design iteration, the mesh is adapted to control discretization error in the objective
function. An example is shown in Figure 5.17, which shows the mesh adapted to accurately
compute the target pressure signature. The approach to meshing used for this problem
is based on [101], which considered this problem from the point of view of progressive
adaptive meshing. The mesh adaptation functional is subtly different from the objective:

Fadapt =
1

2p2
•

Z
(p� p•)2dS (5.4)
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This functional targets discrepancies between the signature and the free-stream pressure,
which has two advantages. First, unlike Equation (5.3), Equation (5.4) avoids quadratically
tending to zero as the signal approaches the target. This circumvents numerical problems
with mesh refinement accuracy near the optimum. Second, it focuses mesh adaptation on
the strongest regions of the signal, which most impact the loudness in decibels after the
boom has coalesced and propagated to the ground. For optimization, the meshes were
adapted over 10 levels. To resolve the strongly varying flow fields encountered during
optimization, the actual cell counts ranged from 7 million to 16 million.

Geometry and Parameterization

The baseline geometry is a cone. The parameterization allows the radius to be specified at
various control stations, with linear lofting in between. The initial parameterization (shown
in black in Figure 5.18) consists of three radius stations evenly distributed along the region
of the forebody that can affect the pressure along the sensor. Subsequent refinements of the
shape control follow the binary structure illustrated in Figure 5.18.

Sensor

h

L
= 1.4

38.7�

Mach 1.6
� = 0

Figure 5.17: Supersonic Forebody: Example of an adapted flow mesh. Cells are distributed to ac-
curately compute the pressure signature along the sensor (orange line). The mesh shown is for the
target shape and has 1.9M cells.
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Figure 5.18: Supersonic Forebody: Hierarchical shape parameterization of forebody radius

Adaptation Strategy

I first test that the adaptive procedure can solve the problem in a continuous sense. For
this test, a gradient-reduction trigger is used with r = 0.01 and w = 2. One level of
candidates is considered at a time (d = 1), and the regularity rules from Section 3.4.4 are
applied. The constructive adaptation procedure is used with Nw = 3 and auto-growth
settings w = 4, r = 0.05. Like most aerodynamic functionals, Equation (5.3) does not
have an analytic Hessian available. As in Section 5.2, the indicator ID is computed by
prolonging the BFGS Hessian diagonal approximation from the previous search space into
each candidate search space, using Equation (3.25). Not knowing the scale term M for this
functional, I used the term for inverse surface pressure matching. This was motivated by
Figure B.3 in Appendix B.3.1, which suggests that this at least improves the predictions,
despite clearly being incomplete.

Results

Figure 5.19a shows several snapshots of the convergence to the target signal. By the end,
the signal is nearly indistinguishable from the target. The evolution of the shape parameter-
ization is shown in Figure 5.19b. Generally the system has clustered more shape control in
regions corresponding to higher curvature in the signal. Linear supersonic theory predicts
that these correspond to high-curvature regions of the geometry itself. Some previous ap-
proaches to adaptive parameterization have adapted directly to geometric curvature [81].
For this problem such indirect techniques might perform well, although it is simple to
construct problems where that would not be the case.
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Figure 5.19: Supersonic Forebody: Results of optimization with adaptive parameterization
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Figure 5.20: Supersonic Forebody: Objective conver-
gence (adaptive parameterization strategy)

Figure 5.20 shows the objective
smoothly converging by over four or-
ders of magnitude. On the finest level,
the gradients are so small that even the
small amount of remaining discretiza-
tion error begins to affect the conver-
gence. These results are a further
demonstration that the adaptive strat-
egy can robustly approach the continu-
ous optimal design, at least as closely
as the simulation accuracy permits.

Next, I compared the performance
of several other refinement strategies
on this problem:

• Static parameterizations (17-DV,
33-DV, 65-DV)

• Uniform refinement starting from
9 DVS

• Adaptive refinement starting from
9 DVS (driven by ID vs. IG)

Figure 5.21 compares the objective convergence rates for these strategies. As expected,
coarser static parameterizations support only limited matching of the target signal. When
attempting to use a 63-DV static parameterization, early high-frequency geometric defor-
mations were enacted, causing the optimization to stall while still quite far from the target.
This is a commonly-observed characteristic for optimization with high-resolution shape
control (e.g. [162]), and gradient smoothing is typically advocated (e.g. [30]). All progres-
sive parameterization approaches followed qualitatively smoother design trajectories. This
obviates the need for such gradient smoothing, results in more realistic designs throughout
the early phases of optimization, and ultimately allows the optimizer to drive ever closer
to the target signal.

Throughout the process, the progressive approaches achieved equivalent objective re-
duction with fewer simulations than the static parameterizations. The adaptive strategies
required about the same number of simulations as a uniform refinement strategy. How-
ever, Figure 5.21b shows that they can solve the problem with substantially fewer design
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variables, which has numerous benefits. There was not a substantial difference between
using IG and ID on this problem. Like Section 5.2 this problem involves only one class of
shape control, which lessens the need for second-order information. However, I also used
a scale-term that is not rigorously true for this objective functional — correcting that might
improve the performance of ID.
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(a) Convergence with respect to major iteration.
⇥-marks denote search space refinements.
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Figure 5.21: Supersonic Forebody: Objective convergence under different refinement strategies



CHAPTER 6

DESIGN EXAMPLES

This chapter evaluates the progressive parameterization system on several drag minimiza-
tion problems in 2D and 3D, under subsonic and transonic conditions. The first two ex-
amples were posed by the AIAA Aerodynamic Design Optimization Discussion Group1

and have been the subject of numerous studies [51–54, 56, 94, 162, 163]. For these exam-
ples, evaluation focuses primarily on the basic progressive system developed in Chapter 2,
using uniform shape control refinement. The last two examples examine the potential of
the adaptive system developed in Chapter 3 to further improve efficiency and provide the
designer with feedback.

6.1 Symmetric Transonic Airfoil

This example considers drag minimization for a symmetric airfoil under inviscid conditions.
The problem was posed as part of the AIAA Aerodynamic Design Optimization Discussion
Group, where it was investigated by several researchers [51–54, 162, 163]. The initial airfoil
is a modified NACA 0012 (henceforth “N0012m”), where the trailing edge is made sharp.2

The design Mach number is 0.85, while the angle of attack is fixed at a = 0�. Additionally,
the final airfoil shape is required to contain the original airfoil. This constraint is satisfied
when y � yN0012m everywhere on the upper surface, and conversely on the lower surface.

1Cases I and III from the discussion group.
2Via modification of the x4 coefficient: y = ±0.6

�
0.2969

p
x� 0.1260x� 0.3516x2 + 0.2843x3 � 0.1036x4�

86
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Geometry and Parameterization
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Figure 6.1: Symmetric Airfoil: Initial parameterization
with 7 design variables, generated by twice uniformly
refining a 1-DV parameterization (lower half generated
by symmetry)

The airfoil is parameterized using the
RBF-based direct manipulation tech-
nique described in Section 4.4. Ini-
tially a single pilot point is placed on
the top surface, as shown in Figure 6.1
(black dot). Each parameter enacts
a roughly bump-shaped deformation
centered on the pilot point (see Figure 4.4). Having observed that it is usually more efficient
to start with several design variables rather than a truly minimal set, two uniform refine-
ments are performed before commencement of optimization, yielding seven initial design
variables. The shape control is clustered towards the leading edge by transforming the
arc-length parametric space.3 During shape control refinement, new pilot points are placed
at the midpoints between existing ones. The midpoint is also measured in the transformed
space, so that in physical space, new parameters are biased towards the leading edge.

To handle the containment constraint, I set the lower bound of each shape parameter to
the corresponding local thickness of the N0012m. The direct manipulation approach guar-
antees that the containment constraint will be satisfied exactly at the pilot points. Regions
of the surface between them may temporarily violate the constraint, but these violations
are clamped down as more parameters are added. This is an example of a situation where it
would be incorrect to use the design variable bounds prolongation operator (Equation (2.6)),
which is based on linear interpolation. For this case, the containment constraint must be
set by directly sampling the equation that generates the N0012m.

Meshing

The solution must be symmetric, so the flow is solved only in the upper half of the domain
with a symmetry boundary condition at y = 0. Due to the extreme sensitivity of the
optimal design, forcing symmetry also strongly improves convergence, as observed in [56].
The farfield boundaries are placed 96 chords away in each coordinate direction, which an
initial domain size study determined was necessary to resolve the final design’s carefully
tuned shock structure (see Figure 6.2a). More detail about the sensitivity to the farfield
distance was given in a previous paper [94]. The mesh was adapted using the adjoint-
based approach described in Appendix C.

3Transformation function is unew = u� 0.15 sin(2pu).
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Optimization Results

Algorithm A was invoked, with a uniform refinement strategy, and a fairly aggressive slope-
based trigger (r = 0.2, w = 1). Figure 6.2a shows the final optimized airfoil and its pressure
profile. Unable to slim the profile at the thickest point, the optimizer instead substantially
increased the thickness at the leading and trailing edges, causing the leading edge to be-
come extremely blunt. Although unintuitive, this is roughly the expected optimal result for
this inviscid, symmetric, single-point design problem. Meheut et al. directly compare this
resulting shape to those obtained by various research groups [56]. The result obtained here,
which was discovered via automatic parameterization refinement, performed favorably in
comparison to the other results. The final design satisfies the containment constraint over
the entire airfoil surface (not just at the interpolation points).

Figure 6.3 compares the initial and final meshes, which were automatically adapted to
reduce error in drag. The refinement patterns reflect movement of the shock and changes
in the width of the supersonic region. The adjoint-based mesh adaptation process exhibited
smooth, asymptotic convergence of the error estimate (see e.g. Figure C.1 in Appendix C).
The error level was roughly constant throughout the optimization (see Table 6.1), giving
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Figure 6.2: Symmetric Airfoil: Progressive parameterization optimization results
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Table 6.1: Symmetric Airfoil: Inviscid drag reduc-
tion with optimization. Drag and error expressed
in counts (CD · 104)

Baseline 7-DV 15-DV 31-DV

CD 471.3 273.8 133.0 41.3
Error est. ±0.1 ±0.1 ±0.1 ±0.35

Cells 26 K 49 K 50 K 61 K

Baseline Final

Mach

0.85 1 1.15

Figure 6.3: Symmetric Airfoil: Comparison of baseline and final meshes. The mesh refines the
regions most important for computing drag, primarily focusing on the leading edge expansion and
shock. To achieve the same error tolerance for both designs, the baseline mesh required only 26K
cells (upper half only), while the final design required 61K cells.

high credibility to the final design. For the final design, the estimated error in drag was less
than 0.3 counts (< 3 · 10�5 in CD).

Figure 6.2b shows the convergence of the objective function over 60 major iterations, and
over 3 parameterization levels. By the final 31-DV parameterization, the inviscid drag has
been reduced by a factor of 10, from the baseline 471 counts to 41.3 counts. An additional
refinement to 63 DVS proved unable to further improve the design. Though some further
improvement is evidently possible [56], it is clear that the design is beginning to approach
the continuous optimum; Figure 6.2b shows that each additional refinement is resulting in
diminishing improvement.
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6.1.1 Static, Progressive, and Adaptive Parameterizations

0 30 60 90 120 150 180 210 240 270 300

Cost (minutes)

0

100

200

300

400

500

O
b
je

ct
iv

e

7-DV

15-DV

31-DV

63-DV

Progressive 7-15-31 DV

Adaptive 7-12-22 DV

Figure 6.4: Symmetric Airfoil: Cost-effectiveness
of each parameterization scheme, showing design
improvement vs. wall-clock time (using late 2013
MacBook Pro, 4⇥ 2.6GHz Intel Core i7, 16GB of
memory). ⇥-marks indicate search space refine-
ments on the progressive and adaptive methods.
All cases used identical settings for meshing, solv-
ing, error control and triggering.

To give a rough performance compari-
son, Figure 6.4 plots objective convergence
with respect to wall-clock time. Each
curve corresponds to a different refine-
ment strategy. The progressive refinement
schemes (labeled “Progressive” and “Adap-
tive”) achieved faster and deeper overall
design improvement than any static pa-
rameterization, regardless of its resolution.
As expected, low-dimensional static search
spaces support limited design improve-
ment, while high-dimensional static spaces
take much longer to navigate to the opti-
mum. On the finest (63-DV) static parame-
terization, which stalled quite early, the op-
timizer may simply be unable to navigate
the design space, as also reported by Car-
rier et al. on this problem [162]. Starting in
a coarse design space appears to smooth
the navigation early on, leading to a more
robust search process.

The adaptive approach achieved similar
design improvement but with fewer design
variables than uniform refinement (22 vs.
31 DVS). It also performed slightly faster
in wall-clock time than uniform refinement
throughout most of the optimization. This speedup is largely due to the smaller num-
ber of shape derivative calls to the geometry modeler and gradient projections, and also
partly due to the somewhat lower dimensional design space. For slow geometry model-
ers, this advantage could be even more significant. However, other factors such as the
trigger (Section 2.4.1), rate of variable introduction (Section 3.4.3), choice of importance
indicator (Section 3.2.2), design variable scaling, and the fundamental path-dependence of
optimization each strongly impact the efficiency.
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6.2 Subsonic Wing Twist Optimization

This example considers wing twist optimization for a straight wing at Mach 0.5. The
objective is to minimize inviscid drag at fixed lift (CL = 0.375). The main goal of this
example is to demonstrate how an adaptive parameterization system can be combined
with adaptive goal-oriented flow meshing with progressive error targets.

Geometry and Parameterization

The baseline geometry is a straight, unswept, untwisted wing, generated by extruding the
N0012m section three chord lengths and capping the tip by a simple revolution. The design
variables are wing twist at various spanwise stations. The airfoil section and planform
remain unmodified. The twist is in the streamwise plane about the trailing edge and is
linearly interpolated between successive stations. The global angle of attack is variable
while the wing root twist is fixed. The first parameterization (“P0”) has two twist stations,
located at the tip and mid-span. To generate the second level (“P1”), new twist stations are
added at the midpoints between existing ones.

Adaptive Meshing

The baseline design has about 76.7 counts of inviscid drag. Unlike the previous example
where the objective was reduced by a factor of ten, here the possible improvements are very
small. Assuming the span efficiency factor e cannot exceed 1.0, as non-planar deformations
are minimal with the twist applied about the trailing edge, the lowest possible inviscid
drag is

CDmin =
C2

L
pe0ÆR

=
0.3752

6.0p
= 74.6 counts (6.1)

However, a very small shock was observed on the wing tip near the trailing edge, where
the flow accelerates around the tip to the top surface, which may further erode the possible
drag reduction. Adjoints are solved for the drag and lift functionals to compute their gra-
dients, allowing the nonlinear lift constraint to be treated exactly by SNOPT. The farfield
boundaries were placed at 48 chords away. The mesh was automatically adapted to mini-
mize error in span efficiency factor:

Fadapt =
C2

L
pCDÆR
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For this type of problem, there are high demands on the accuracy of the flow solutions [164].
To accelerate optimization, in the first search space the error targets were set such that the
meshes contained about 5 million cells. For the second search space, the tolerance was
tightened, resulting in meshes with 10-15 million cells.
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(a) Left: Sectional lift distribution profiles. Top right: Deviation from elliptic distribution. Bottom
right: Twist distribution (twist is in degrees and indicates local angle of attack (aglobal + g))
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Optimization Results

Figure 6.5a shows the main results of the optimization. The lift distribution rapidly ap-
proaches an elliptical shape. The only small discrepancies are at the tip, due to the unta-
pered section, and at the root, which must compensate to exactly match lift. Figure 6.5b
shows the convergence of the lift and drag functionals. Because a coarser mesh was used
in the initial design space, there is a jump in functional values when transitioning to the
finer design space. Further refinement of the parameterization beyond five twist stations
proved unable to substantially reduce the drag further. This may be partly due to losses
stemming from the shock at the tip.

To accurately determine the total improvement, additional accurate analyses were per-
formed on the initial and final designs. Figure 6.6 shows the convergence of span efficiency
factor with mesh refinement for the initial and final designs, both trimmed to CL = 0.3750.
The initial design had CD = 76.7 counts of inviscid drag (e = 0.973 ± 0.005). By the final
design this was improved to CD = 75.6 counts (e = 0.987 ± 0.003). The error bounds come
from the adjoint-derived discretization error bounds shown in Figure 6.6, which smoothly
and asymptotically converge with mesh refinement and properly bracket the final func-
tional value for the last several meshes.
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Figure 6.6: Twist optimization: Convergence of span efficiency factor with mesh refinement
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6.3 Multipoint Transonic Airfoil Design

minimize
X

CD1 + CD2

subject to CL1 = CL2 = 0.75

(V) CM1 � �0.18

(V) CM2 � �0.25

9�  f  13�

(V) g  6�

A � ARAE ⇡ 0.07787

ti � 0.9tRAEi 8i

!12

� �

Figure 6.7: Transonic Airfoil: Problem statement.
(V) denotes constraints that are initially violated.

This example considers multipoint tran-
sonic airfoil design under inviscid condi-
tions. The complete optimization statement
is given in Figure 6.7. The objective is to
minimize an equally-weighted sum of drag
at two flight conditions, Mach 0.79 and 0.82,
with CL = 0.75 at both conditions. A min-
imum pitching moment constraint is im-
posed at each design point. The total cross-
sectional area A must be preserved, and the
airfoil is required to maintain at least 90%
of its initial thickness everywhere (enforced
discretely at 20 chordwise locations ti). Be-
cause the solver is inviscid, the optimiza-
tion often leads to excessive trailing edge
camber, which would result in poor viscous
performance. To prevent this, I constrained
the camber line angle g at the trailing edge
as well as the geometric closing angle f (see Figure 6.7).

Gradients for the six aerodynamic functionals are computed using adjoint solutions.
The 23 geometric constraints are computed on the discrete surface, with gradients derived
analytically. The angle of attack at each design point is variable. At each design itera-
tion, and for each design point, adjoint-driven mesh adaptation is performed to control
discretization error (see Appendix C), culminating in a final fine-mesh flow solution and
three adjoint solutions to compute gradients for drag, lift, and pitching moment.

Geometry and Parameterization
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Figure 6.8: Transonic Airfoil: Baseline
geometry (RAE 2822), showing first
three levels of uniformly refined shape
control (2-DV, 6-DV and 14-DV)

The baseline geometry is the RAE 2822 airfoil shown
in Figure 6.8. The airfoil is parameterized using the
RBF-based direct manipulation technique described
in Section 4.4. To remove as much initial bias as pos-
sible, the optimizer was initially given only two de-
sign variables (top and bottom). Figure 6.8 shows
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the design variable locations for the first few shape control levels. The tree depth was
limited to dmax = 5, so that the finest allowed parameterization has 62 parameters.

Adaptation Strategy

In the verifications studies in Sections 5.2 and 5.3 it became clear that for problems with only
a single class of shape control (like this problem), a first-order indicator provides sufficiently
good relative rankings. Therefore, Equation (3.17) was used to rank candidate refinements.
I used the slope reduction trigger from Section 2.4.1, with r = 0.01. In the presence of the
initially violated constraints, SNOPT’s merit function undergoes large fluctuations, which
can cause early slope-based triggering. Therefore, I used a large window of w = 6 for the
first three levels, and subsequently lowered the window to w = 2 to improve efficiency.
The target growth rate was manually set to 1.75⇥. (Actual growth rates are also affected by
regularity rules.) For the constructive refinement algorithm (Function 5) I used w = 3.
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Figure 6.9: Transonic Airfoil: Optimization results for the adaptive parameterization approach. Top:
Optimized airfoil to scale. Middle: Final airfoil from three intermediate search spaces (4-DV, 15-DV,
26-DV), showing 26-DV adapted parameterization. Bottom: Corresponding pressure profiles for the
Mach 0.79 design point.
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Optimization Results

!11

Figure 6.10: Transonic Airfoil: History of adaptive re-
finement, showing best airfoils attained under the first
several parameterizations.

Figure 6.9 shows the airfoil shapes and
pressure profiles at three stages dur-
ing the adaptive approach (4-DV, 15-
DV, 26-DV). Examining the Mach 0.79
pressure profile, the loading is shifted
forward. The reflex camber at the trail-
ing edge is made more shallow to sat-
isfy the camber-line angle constraint.
The main shock is moved forward and
weakened. A small shock temporar-
ily appears on the lower surface while
meeting the constraints, but is then
eliminated by the final design. Over-
all the inviscid drag at Mach 0.79 is
reduced from over 300 counts to 66
counts, and at Mach 0.82 from about
600 counts to 276 counts. Figure 6.9 also shows the non-uniformly refined final parameteri-
zation. The sequence of the first few adapted parameterizations is shown in Figure 6.10.

Figure 6.11 shows the evolution of the lift, drag and pitching moment functionals. The
constraints are rapidly met and held throughout the optimization, while the drag is gradu-
ally reduced. The geometric constraints are all satisfied by the final design, and many are
active, especially the area and trailing edge angle constraints. Because viscous effects are
ignored, it is not surprising that the final shapes exhibit non-ideal behavior at the leading
and trailing edges.

At each re-parameterization, the quasi-Newton optimizer performs a “cold restart”,
which resets the Hessian approximation to the identity matrix. Because of this, the lift
constraints are violated for the first few search directions immediately after refining, before
quickly snapping back to the targets. At the final design, the airfoil is still slowly improving.
The fact that substantial gains were made even on the final parameterization indicates that
the continuous limit of design improvement has not yet been reached.

Comparison to Static and Uniform Refinement

Now I compare the performance of the previous optimization to several static shape pa-
rameterizations (with 6, 14, 30 and 62 shape design variables) and to uniform refinement.
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Figure 6.11: Transonic Airfoil: Convergence of aerodynamic functionals across all adaptively refined
parameterization levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown
in dashed lines.

Figure 6.12a compares the convergence of the combined drag objective for the various
parameterizations. On first glance, the first 10-20 major iterations appear to exhibit con-
voluted convergence. During this phase, the optimizer was driving the initially violated
constraints to be satisfied, which incurred a severe drag penalty. Subsequent search space
refinement enabled the drag objective to be reduced. Overall, the progressive and adaptive
approaches strongly outperform any of the static parameterizations, achieving more consis-
tent progress, converging far faster, and ultimately reaching equivalently good or superior
designs. This is a clear confirmation of the predicted behavior, described and illustrated
notionally in Figure 2.2 as following the “inside track” of the static parameterizations.

The acceleration is even more apparent in Figure 6.12b, which rescales the x-axis to
show objective improvement vs. wall-clock time. The progressive and adaptive approaches
reach the same objective value as the 63-DV parameterization in about one third the time. In
addition to the savings to due optimizing in lower dimensional spaces (which is visible in
Figure 6.12a), Figure 6.12b shows additional savings due to the O(NDV) shape derivative
computations ∂S

∂X and the O(NDV) adjoint inner products to compute ∂J
∂X and ∂Cj

∂X . Typically
these costs are neglected in comparison to the flow solutions; here they are especially
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visible because of the low-cost flow solution. Adaptive refinement controls these costs by
reducing the number of design variables. Figure 6.12 also includes the cost of long line
searches, visible in the occasional long gaps between major iterations.

Early in design, some of the static design spaces initially outperform the extremely
coarse (2-, 4- and 6-DV) progressive and adaptive search spaces. This indicates that the
choice to start with a minimal 2-DV design space was not ideal. In terms of wall-clock time,
it is more efficient to start with several variables. Nevertheless, by the end, the progressive
approaches have still solidly outperformed the static parameterizations, which tend to stall
well before reaching their theoretical potential,4 most likely because of the relative lack of
smoothness in their design trajectories.

By adjusting the progressive and adaptive strategies, even more speedup is certainly

4I performed cold restarts to verify that no further progress could be made.
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Figure 6.12: Transonic Airfoil: Convergence of combined drag value (CD1 + CD2 ) (ignoring satisfac-
tion of constraints) for each parameterization method. ⇥-marks denote search space refinements.
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Figure 6.13: Transonic Airfoil: Shapes encountered during optimization under a progressive param-
eterization (right) are consistently much smoother than airfoils encountered under a static parame-
terization (left).

possible. For example, the relatively delayed trigger could be tightened, as it resulted in
several extended periods of little design improvement. The second-order indicator might
also provide some improvement, as could an auto-growth strategy. Nevertheless, even the
chosen strategy demonstrates tremendous acceleration.

As a final note for this problem, Figure 6.13 shows several representative airfoils encoun-
tered during optimization. These support a general observation that with a progressive or
adaptive approach, the entire design trajectory consists of qualitatively smoother, more rea-
sonable airfoils. The early parameterizations preclude high-frequency oscillations. Only as
the design approaches the optimum are higher frequency deformations permitted. This is a
desirable characteristic from a robustness standpoint, and also because it makes it possible
to halt the optimization at any point and have a reasonable design.

6.4 Adaptive Flap Layout for Truss-Braced Wing Configuration

This final example considers adaptive wing morphing on a truss-braced wing aircraft con-
figuration. Adaptive wing morphing encompasses a broad class of techniques for reducing
the drag penalty that is usually incurred when flying at off-design conditions. One specific
morphing concept is the variable camber, continuous trailing edge flap (VCCTEF) system,
where a flap system is installed at the trailing edge of the wing, as illustrated in Figure 4.5.
Each flap can be subdivided into multiple segments (Figure 4.5b).

Previous studies have demonstrated that such flap systems can yield substantial drag
savings at off-design flight conditions [155]. However, there are major open questions
regarding the design of such as system. How many flaps should be installed, and how
should they be distributed and sized? Clearly, increasing the number of flaps increases the
potential aerodynamic benefits of flap adaptation — but it also increases the complexity and
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(a) Trailing edge flap system. Flaps are in blue, elas-
tomer regions depicted in gold.

Strut

Jury strut

Flap Systems

(b) Strut and flap system locations

Figure 6.14: Truss-braced Wing: Configuration

weight of the system. In this example, I show that the adaptive parameterization system
can provide a designer with feedback to help answer these questions.

Approach

All examples thus far have considered designing a fixed cruise shape. Here we take a given
cruise configuration and try to determine a minimal set of flaps to install that will maximally
improve off-design performance. The process consists of two alternating phases:

1. Optimize the flap deflections to minimize drag.

2. Perform the directional flap subdivision that would most improve the entire system’s
potential to further reduce the drag.

This process is equivalent to Algorithm A, and step (2) is precisely what the refinement
indicator predicts. However, there is one important distinction from all previous examples.
In those cases the shape control merely facilitated the efficient discovery of an optimal
cruise shape. Here, the shape control has a physical manifestation. We are seeking an
efficient set of active deformation modes to build into the aircraft itself. This places a much
higher premium on precise adaptation. Therefore, I perform only one subdivision at a time
(Nadd = 1), and deeply converge the optimization of the flap deflections at each level.

Note that this procedure is effectively a “greedy” algorithm to solve a combinatorial
optimization problem in one shot. One flap is added at a time, based on a local assessment
of importance. This procedure is not guaranteed to find the globally optimal flap topology,
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but it is far less costly than exhaustive, random, or evolutionary searches. I consider only bi-
nary subdivisions of the flap structure. Clearly, allowing continuous resizing of individual
flaps or merging of existing flaps would offer much more flexibility.

Aircraft Configuration

The baseline aircraft configuration involves a truss-braced wing (TBW), shown in Fig-
ure 6.14a. TBW concepts have remained a topic of interest over the years [165, 166], partly
due to their ability to support a wing of much higher aspect ratio than conventional trans-
port wings. The wing used for this test has a span of 169 feet, with an aspect ratio of about
19.4. To support such a long slender wing while controlling weight, a large strut and a
vertical jury strut are installed. The flight Mach number is 0.7, with a lift coefficient of
CL = 0.766, with Sre f = 1475ft2.

As a caveat, it must be noted that the baseline design had not been sufficiently optimized
for drag and has a rather high inviscid drag of CD = 0.0169 for the full configuration, sans
horizontal tail, pylons and nacelles. There are shocks in the truss region, which incur
substantial wave drag penalties. The purpose of this study is to examine a methodology
for flap adaptation, but we will see that in the process of laying out the flap system, the
adaptation pattern will also reveal an opportunity to improve the baseline design.

Flap System Modeling

As described in Section 4.4.1, I take an existing flap system modeler developed by Ro-
driguez et al. [155] and non-invasively wrap it to enable adaptive parameterization. Each
flap segment is considered to be made of a rigid material, and is deflected by rigid rotation
about a specific axis. Following [155], between adjacent flaps, I assume a narrow region of
an elastomer material, which is modeled by smoothly interpolating the neighboring flap
deflections using cubic interpolation.

Two independent flap systems are established, for the inboard and outboard sections
of the wing, as shown in Figure 6.14b. The division between the two coincides with both
the wing break and the wing-strut junction. Together, they cover the full length of the
wing. Initially, each system consists of a single monolithic flap, which can be subsequently
subdivided, in the streamwise and/or spanwise direction.

Flow Meshing

The farfield boundaries are placed at about 20 semi-span lengths away in each direction,
and a symmetry boundary condition is applied along the fuselage centerline. The meshes
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were adapted to resolve a weighted sum of lift and drag on the entire configuration:

Fadapt = CL + 10CD

To reduce the cost of the optimization, flow meshes of 12-13 million cells were used. Fine
grid solutions of 60 million cells were performed on the initial and final designs to verify
the performance improvement.

Verification

Initially, there are two geometric design variables: the deflections of the monolithic inboard
and outboard flaps. The global angle of attack is also a design variable throughout this
study. After optimizing those flap deflections, the system is given four possible candidate
subdivisions, shown in Figure 6.15. I examine ranking these candidates using the first-
order indicator, both accounting for the lift constraint (DJ⇢H

? , Equation (3.17)) and ignoring
it (DJ⇢H,�C

? , Equation (3.19)). The latter case is similar to the indicator used in [50], which
could not explicitly account for non-localized constraints, like lift. I did not use any Hessian
information in this case due to uncertainties about the accuracy of using the 2D pressure-
matching prolongation functional for this 3D case.

1

2 3

4

Measured drag reduction  
over optimized 2-flap configuration

-1.7

-1.0

-0.1 0

Predicted rankings

1.0395e-5

2.78e-09

1.29e-10

3.95e-11

9.85e-12

�J⇢H,�C
� �J⇢H

�

168.9

Figure 6.15: Truss-braced Wing: The adaptive system ranks the four initial candidate flap subdi-
visions using IG, both accounting for and neglecting constraints. The version accounting for CL
provides a correct relative ranking of the candidates, as demonstrated by the actual drag recovery
obtained by optimization. (Drag values are in counts, trimmed to CL constraint.)
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Figure 6.16: Truss-braced Wing: Final results

Figure 6.15 compares the rankings
of potential drag reduction according
to both DJ⇢H

? and DJ⇢H,�C
? . Without

the constraint terms, the indicator es-
sentially cannot distinguish among the
candidates — the drag objective is
roughly equally sensitive to all the
possible subdivided flap layouts. By
explicitly accounting for the lift con-
straint in the indicator, the system
assigns very different importances to
each subdivision. These predictions
are borne out in reality. The actual
drag reduction for each candidate re-
finement is measured by running an
independent optimization, like in Sec-
tions 5.1.1 and 5.2.1. The right side
of Figure 6.15 shows that the subdivi-
sions ranked highest by DJ⇢H

? indeed
achieve the greatest drag reduction in
practice, and vice versa.

Results

Next, several more flap adaptations are
performed, with intervening flap op-
timizations. The final flap layout is
shown in Figure 6.16a. The adaptive
procedure has focused flap refinement
on the inboard system and has substantially deflected the inboard flaps downward, while
lowering global a to hold lift. By deflecting these inboard flaps down, the sectional lift in the
truss region increases, relative to the outboard regions. The resulting increase in circulation
slows the airflow through the truss, reducing the strength of the shocks, and thus reducing
wave drag. To verify the drag savings, adaptive fine mesh solutions (60 million cells) were
performed on the initial and final design, with a trimmed to meet the lift constraint. On
this substantially more accurate mesh, the baseline design had CD = 0.0145 ± 0.0002. The
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final adapted flap system reduced the inviscid drag to CD = 0.0137 ± 0.0002, an overall
savings of about 8 counts.

Figure 6.17 compares optimized inviscid drag (on the coarser mesh) for different flap
layouts. Each point on the diagram corresponds to a particular flap topology. The blue
curve shows the history of the adaptive refinement procedure. The other two points corre-
spond to two reasonable hypotheses as to what might constitute an effective 8-flap topology.
The adaptive procedure has discovered a layout that outperforms and these two layouts,
while using fewer flap components.

These results come with several caveats. First, this flap layout was designed to improve
a given baseline cruise design, which itself was far from optimal. Presented with a better
baseline (which would be unlikely to suffer from so much wave drag), the adaptive system
would pursue different flap layouts, perhaps focusing on improving the spanwise lift dis-
tribution. Secondly, the layout design process was goal-oriented — it sought the flaps that
could most reduce the objective while meeting the constraints. With a more comprehensive
optimization formulation (perhaps involving weight, structures, flutter, etc.), the resulting
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Figure 6.17: Truss-braced Wing: Inviscid drag on full configuration, on coarse 12-million cell opti-
mization mesh. Adaptive refinement has uncovered a flap topology that outperforms two reason-
able layouts, while using fewer components. In the process it has begun to reveal an approximate
tradeoff between drag reduction and number of parts.
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flap topology would reflect those different goals. Thirdly, the procedure was limited to
binary subdivisions of flaps. If the system were provided with more options for flap lay-
out, it could find a superior one, although the adaptation procedure would become more
expensive.

The True Pareto Front

Figure 6.17 gives an approximate sense of the tradeoff between the simplicity of having
fewer flap components and the greater drag reduction possible with more flaps. This is
visually similar to a Pareto front, but is not truly the globally optimal . In Section 7.2 I dis-
cuss some ways to build accurate Pareto fronts using adaptive parameterization. However,
in this case one of the objectives is a discrete variable, Nf laps, which makes the problem
substantially more difficult. To compute the globally optimal layout for N components, one
would need to perform a full flap optimization for each of the O(N!) possible layouts. The
functional evaluation for this problem is itself an entire optimization. Even with genetic
algorithms, the cost of this approach would be prohibitive.

Alternatively, we could use the indicator as a surrogate for expected drag reduction
of a given flap layout. This would greatly reduce the cost, but the process would be even
more approximate. The indicator is only a local prediction; it is not clear that predictions
made far from the optimum would be sufficiently accurate. Under the greedy strategy I
used, the indicator predictions should improve as they are evaluated closer and closer to
the optimum.



CHAPTER 7

DISCUSSION, FUTURE WORK, AND

APPLICATIONS

In a progressive parameterization approach, the search space is enriched automatically as
the optimization evolves. Recognizing that different design problems may call for different
shape control, and that it may be difficult to predict the appropriate parameters a priori,
I developed an adaptive approach that aims to discover the necessary shape control while
concurrently optimizing the shape. This approach has several inherent benefits:

• Automation: The designer does not need to predict the necessary shape parame-
ters before design begins, which reduces dependence of the final result on designer
experience and frees the designer to focus on specifying a useful problem.

• Credibility: The process converges to solving the continuous shape optimization
problem, instead of being restricted by the initial parameterization. The convergence
of the objective with respect to shape control refinement allows assessment of prox-
imity to the continuous optimum.

• Feedback: The emergent parameterization refinement pattern can convey useful in-
formation about the design problem.

Some important results of the present work are that

• The adaptive system is able to automatically discover the parameters necessary to
solve a problem, without user intervention (Sections 5.1 to 5.3).

106
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• The process is able to robustly drive the shape towards a continuous local optimum
(Sections 5.2 and 5.3).

• Compared to using all the design variables up front, progressive parameterization ac-
celerates the rate of design improvement (as much as 3⇥ in some cases, see especially
Sections 6.1 and 6.3).

• Progressive parameterization appears to lead to smoother and more reasonable de-
sign trajectories, improving the robustness of optimization (see Sections 5.3 and 6.3).
This also means that the optimum of each suboptimization level is more qualitatively
reasonable, so the overall process can be safely terminated early.

• Compared to previous approaches, the new refinement indicator makes substantially
better predictions of the most important shape control, especially in cases of multiple
shape control classes (Section 5.1) or in the presence of important constraints (Sec-
tion 6.4). For unconstrained design with single classes of shape control (Sections 5.2
and 5.3), it appears that a first-order indicator is sufficient.

My implementation involves six parameters for tuning the adaptation strategy1. The
two with biggest performance impact are the cutoffs r for the trigger and for the auto-
growth strategy. Carefully selected strategies enabled the adaptive approach to solidly
outperform uniform refinement. In all cases, I was able to identify reasonable defaults that
tend to lead to good performance — an experienced user can adjust these to maximize
performance.

While the studies presented use an in-house discrete geometry modeler, the implemen-
tation is specifically architected to work with any geometry modeler that meets certain
requirements, outlined in Chapter 4. Although some modification or wrapping of the
modeler is required, the computational acceleration and reduction in setup time strongly
justifies this upfront expenditure.

7.1 Future Work

Discovering Important Classes of Shape Control

In this work, the class or basis of shape control (e.g. fuselage radius, wing thickness,
sweep, twist, etc.) was always specified. The adaptive system refines the resolution and

1d in GETCANDIDATES(·); r and w in the TRIGGER(·); Nw, r and w in ADAPTSHAPECONTROL(·)
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distribution within the given class. We might, however, consider looking beyond designer-
specified shape control classes and explore automatically determining a more effective
basis for optimization. This is a much harder problem algorithmically. It is not clear what
constitutes a valid shape control basis, how the effectiveness of a basis would be measured,
or how would one search the “space” of all shape control bases. However, the promise is
staggering; the most efficient possible shape control basis can always solve the problem
with one degree of freedom: the vector between the initial design and the optimal design.

Continuous Redistribution

A more tractable area for improvement involves moving outside the discrete refinement
structure I impose in this work, and allowing continuous optimal redistribution (r-refinement)
of the shape parameter locations. Some preliminary work in this area has been done [58, 77].
In general, however, r-refinement must be combined with h-refinement to guarantee con-
vergence to the continuous optimum.

Preconditioning

For the cases considered, the optimizer was not given scaling information. In future work,
the prolongation operator from Section 3.3 might be used to precondition each subopti-
mization, using Hessian information from the previous search space. In theory, this would
accelerate the overall process by removing the partially redundant initial Hessian con-
struction at each level. It would be interesting to compare a well-preconditioned static
optimization problem to unpreconditioned (and preconditioned) progressive parameteri-
zation. Chaigne and Désidéri note that the two methods are mathematically related [79]. It
is not clear whether the acceleration provided by the two methods is additive or redundant.

Generalization of Hessian Scaling

The second-order indicator is demonstrably more accurate, yet it depends on the nature of
the objective function, including the governing equations. For each new objective, the Hes-
sian must be analyzed. I derived a second-order indicator for two objective functions: geo-
metric shape matching and pressure matching. While the latter appeared to work reason-
ably for a range of pressure-based functionals, it would be desirable to place the approach
on firmer footing through derivation of scale-dependent terms for common functionals.
Fortunately, there is a growing body of literature on this topic [89, 112, 113, 167–170].
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Feasibility Constraints

In this approach, the designer no longer dictates exactly how the shape is permitted to
be modified. There is consequently more need to use explicit constraints to preclude un-
desirable modifications that are otherwise invisible to the objective function. Without
such explicit constraints, the adaptation procedure is likely to exploit weaknesses in the
problem formulation. Although this could become a reactionary hole-plugging task, it is
arguably more directly relevant to design than constructing an arbitrary parameterization.
In principle it should be possible to codify and automate the specification of some common
constraints, such as non-self-intersection and smoothness.

Cost-Benefit Analysis

My approach attributes all difficulty with navigation to the number of design variables
(more is slower). This is evident in the selection of an automatic growth rate, that treats
each additional parameter as having some effective cost, regardless of the context. Just as
some parameters offer more potential than others, it is reasonable to surmise that some
parameters are more quickly exploitable than others.

Adaptive Procedure

Despite not requiring any PDE solutions, the O(N2
DV) scaling of the adaptation procedure

can still become prohibitive for very large design spaces. One possibility for further re-
ducing the cost is to reuse information from the refinement procedure during the previous
adaptation cycle to reduce the number of candidates being considered in the current cycle.

Singularities

Optimization can be affected by flow singularities, e.g. at airfoil trailing edges and at shocks.
Using sensitivity-driven shape control adaptation means that these singularities could also
impact the evolution of the parameterization, although I did not witness any especially
problematic cases. Simple solutions include geometrically constraining the trailing edge
(as I do in this work) or suppressing sensitivities at known singularities [171].
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7.2 Potential Applications

I have examined adaptive shape control within a relatively narrow context: aerodynamic
design of discrete geometries with an adjoint-driven, gradient-based optimizer. However,
adaptive parameterization offers much broader potential. Here I briefly comment on how
it might improve design approaches in other settings.

Alternative Analyses and Multidisciplinary Design

Adaptive parameterization directly applies to a wide class of PDE-constrained shape op-
timization problems, including viscous flow, unsteady problems, structural optimization,
and acoustic design. In fact, the more expensive the objective and constraint evaluations,
the greater the impact it could have, assuming each analysis component has an adjoint.
Multidisciplinary problems are also perfectly suited to adaptive parameterization. Because
multidisciplinary problems tend to involve many classes of design variables, it is likely that
the second-order indicator would prove critical for determining which variables are most
important to add.

Multifidelity Analysis

Flow meshing and shape parameterization can be viewed as two orthogonal means to trade
cost with accuracy. In each case, substantial acceleration can be gained by moving from a
static resolution approach to a progressive approach. Higher resolution (and higher cost)
are introduced only when necessary to further improve the design. In each case, output-
based adaptation can be used to selectively focus computational effort on the relevant
aspects of the problem. In [94], we combined the two, using a crude approach where the
analysis fidelity and shape control were refined simultaneously, with manually-specified
error tolerances and growth rates. For uniformly refined shape parameterizations, this
proved quite successful, but some major enticing questions remain. For instance, how might
the system know whether it is limited more by insufficient mesh resolution or by insufficient
shape control? (Both are forms of discretization error.) How much can optimization be
accelerated by a combination of the two adaptive strategies? There has been some work
this direction. For example, [59] uses error estimation to combine mesh adaptation with
shape control adaptation, though only for simple model problems.
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Multi-Objective Optimization

Most approaches to constructing multi-objective Pareto-optimal fronts use a fixed, finite
search space. An adaptive parameterization system could construct a Pareto-optimal front
in the continuous shape design space. There are at least two ways this could be done. One
approach would be to create a sample of single-objective scalarizations (weighted sums)
of the competing objectives and perform completely independent optimizations for each
one.2 With this method, each independent “agent” would be driving closer and closer to one
point on the continuously optimal front, independently adapting its own parameterization
to get there. The advantage of this approach is that it would work directly with my existing
adaptive system with no modification.

An alternative approach would be to build a sequence of Pareto fronts in progressively
finer search spaces. Between each level, the parameterization would be adapted identically
for all agents, so that each Pareto front would correspond to an internally consistent search
space. The indicator I developed targets reduction of a single objective. In this case, if the
goal is to obtain an accurate representation of the entire Pareto front, one should define a
new refinement indicator that aims to reduce the average error between the approximate
Pareto front and the Pareto front in the continuous space.

Shape Exploration and Well-Spanning Parameters

Much like output-based flow mesh adaptation, this approach seeks an effective parameter-
ization to solve one particular optimization problem. This adapted parameterization will
not likely be appropriate for other problems, perhaps not even for similar ones. Some situa-
tions require the solution of a large number of similar optimization problems. For example,
consider a conceptual, multi-disciplinary aircraft design tool where airfoil optimization is
treated as a sub-optimization. At each design iteration, the objectives and constraints may
be different — the ideal parameterization is likely to vary as well. Rather than adapt the
parameterization for each iteration, it might be more efficient to determine a single compact
search space in which to solve the whole range of related problems that arise. This would
also be useful for interactive shape exploration [172]. In general, solving broad classes of
problems will likely require many more design variables than single-target optimization3.
Nevertheless, upfront cost at finding a compact parameterization would be amortized over
the many invocations of the optimization. For this type of situation, it would make sense

2There are well known caveats to this approach. It does not traverse non-convex fronts, and evenly-sampled
input weights are not likely to evenly cover the output Pareto front.

3For example, Masters et al. show that achieving even 80% coverage of airfoil databases to sufficient geo-
metric accuracy requires a great many design variables, regardless of the parameterization technique [173].
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to use a different importance indicator that maximizes the ability to span a broad range of
the search space, such as the approach in [58].

Modelers with Fixed Parameterizations

In this work, I focus on shape control that can, in theory, be refined without limit, allowing
arbitrarily close approximation of the continuous problem. Progressive parameterization
may, however, also be useful in situations with a finite, fixed set of design variables, for
example when a designer has no access to the geometry modeler or authority to change the
parameterization. In this case, progressive parameterization amounts to applying a series
of dimension-reducing transformations to an original, large set of design variables, similar
to the approach used in Hwang and Martins [81]. This approach has some drawbacks
which were discussed in Section 1.2.5. Progressive parameterization is most effective when
the geometry modeler is itself imbued with the ability to modify the parameterization.

For computational benefits to be reaped from a progressive parameterization approach,
coarser parameterizations must be reflective of the full design space. Coarser parameteriza-
tions can be defined by linking the parameters, or by simply optimizing larger and larger
subsets of them. As demonstrated in Section 2.1.2, however, naive linking methods do not
always work.

Other Optimization Approaches

This work focused on accelerating optimization approaches based on reduced-space, quasi-
Newton optimizers, the current workhorse for aerodynamic design. Quasi-Newton opti-
mization is unique in that both (1) its asymptotic scaling with respect to NDV is reasonable
but non-constant (typically linear), and (2) it reveals Hessian information that can be lever-
aged to adaptively focus the search, reducing the number of design variables required.
In this same vein, adaptive parameterization might help accelerate other reduced-space
optimization approaches with superior but non-negligible scaling, such as inexact-Newton-
Krylov methods [6, 46]. For full-space (one-shot) methods [30, 33, 45, 174], which have
little or no dependence on the resolution of the shape control, the computational benefits
of reducing the search space might not be appreciable. However, the adaptive refinement
pattern would still inform the designer about which shape control is most essential for
achieving the specific design goals.

For non-adjoint-based approaches (e.g. finite difference-based frameworks or gradient-
free optimization approaches), it is paramount to minimize the number of design variables.
In these cases, a progressive parameterization approach would tremendously effective.
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However, with uniform refinement NDV grows far too fast for non-adjoint-based optimiza-
tion. While this would suggest that a targeted, problem-adaptive approach would be
extremely valuable in this context, my approach to goal-oriented adaptive refinement relies
on adjoint sensitivity information. One intriguing possibility would be to use a lower-
fidelity, adjoint-based tool as a “pilot” for a higher-fidelity optimization tool without an
adjoint solver. The lower-fidelity tool might determine an effective, compact shape param-
eterization, which would then be used by the higher-fidelity tool. However, since the ideal
parameterization depends on the objective function, the low- and high-fidelity frameworks
should be suitably consistent.
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[3] Sóbester, A. and Powell, S., “Design Space Dimensionality Reduction Through Physics-Based
Geometry Re-Parameterization,” Optimization and Engineering, Vol. 14, No. 1, 2013, pp. 37–59.

[4] Poole, D. J., Allen, C. B., and Rendall, T. C. S., “Metric-Based Mathematical Derivation of
Efficient Airfoil Design Variables,” AIAA Journal, Vol. 53, No. 5, 2015, pp. 1349–1361.

[5] Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aerodynamic Shape Optimization
Investigations of the Common Research Model Wing Benchmark,” AIAA Journal, 2014.

[6] Dener, A., Kenway, G. K., Hicken, J. E., and Martins, J., “Comparison of Inexact- and Quasi-
Newton Algorithms for Aerodynamic Shape Optimization,” 53rd AIAA Aerospace Sciences
Meeting, 2015.

[7] Hicks, R. M. and Henne, P. A., “Wing Design by Numerical Optimization,” J. Aircraft, Vol. 15,
No. 7, July 1978.

[8] Brock, W., Burdyshaw, C., Karman, S., Betro, V., Hilbert, B., Anderson, K., and Haimes, R.,
“Adjoint-Based Design Optimization Using CAD Parameterization Through CAPRI,” 50th
AIAA Aerospace Sciences Meeting, 2012.

[9] Haimes, R. and Drela, M., “On The Construction of Aircraft Conceptual Geometry for High-
Fidelity Analysis and Design,” 50th AIAA Aerospace Sciences Meeting, 2012.

[10] Dannenhoffer, J., “OpenCSM: An Open-Source Constructive Solid Modeler for MDAO,” 51st
AIAA Aerospace Sciences Meeting, 2013.

[11] Rodriguez, D. L. and Sturdza, P., “A Rapid Geometry Engine for Preliminary Aircraft Design,”
44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2006.

[12] Hahn, A., “Vehicle Sketch Pad: A Parametric Geometry Modeler for Conceptual Aircraft
Design,” 48th AIAA Aerospace Sciences Meeting, 2010.

[13] Risse, K., Anton, E., Lammering, T., Franz, K., and Hoernschemeyer, R., “An In-
tegrated Environment for Preliminary Aircraft Design and Optimization,” 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,
2012.

114



BIBLIOGRAPHY 115

[14] Wu, H.-Y., Yang, S., Liu, F., and Tsai, H.-M., “Comparison of Three Geometric Representa-
tions of Airfoils for Aerodynamic Optimization,” 16th AIAA Computational Fluid Dynamics
Conference, Orlando, FL, June 2003.

[15] Morris, A. M., Allen, C. B., and Rendall, T. C. S., “High-Fidelity Aerodynamic Shape Optimiza-
tion of Modern Transport Wing using Efficient Hierarchical Parameterization,” International
Journal for Numerical Methods in Fluids, Vol. 63, No. 3, 2010, pp. 297–312.

[16] Sherar, P. A., Thompson, C. P., Xu, B., and Zhong, B., “A Novel Shape Optimization Method
using Knot Insertion Algorithm in B-spline and its Application to Transonic Airfoil Design,”
Scientific Research and Essays, Vol. 6, No. 27, November 2011, pp. 5696–5707.

[17] Wintzer, M. and Ordaz, I., “Under-Track CFD-Based Shape Optimization for a Low-Boom
Demonstrator Concept,” 33rd AIAA Applied Aerodynamics Conference, 2015.

[18] Bryson, A. E. and Ho, Y. C., Applied Optimal Control, Hemisphere, New York, 1975.
[19] Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag,

Berlin, 1971.
[20] Errico, R. M., “What Is an Adjoint Model?” Bulletin of the American Meteorological Society,

Vol. 78, No. 11, 1997, pp. 2577–2591.
[21] Plessix, R. E., “A Review of the Adjoint-State Method for Computing the Gradient of a Func-

tional with Geophysical Applications,” Geophysical Journal International, Vol. 167, No. 2, 2006,
pp. 495–503.

[22] Skiba, Y., “Direct and Adjoint Oil Spill Estimates,” Environmental Monitoring and Assessment,
Vol. 59, No. 1, 1999, pp. 95–109.

[23] Christensen, P. H., “Adjoints and Importance in Rendering: An Overview,” IEEE Transactions
on Visualization and Computer Graphics, Vol. 9, No. 3, July 2003, pp. 329–340.

[24] McNamara, A., Treuille, A., Popović, Z., and Stam, J., “Fluid Control Using the Adjoint
Method,” ACM Trans. Graph., Vol. 23, No. 3, Aug. 2004, pp. 449–456.

[25] Giles, M. and Glasserman, P., “Smoking Adjoints: Fast Monte Carlo Greeks,” Risk Magazine,
2006.

[26] Pironneau, O., “On Optimum Profiles in Stokes Flow,” Journal of Fluid Mechanics, Vol. 59, 1973,
pp. 117–128.

[27] Pironneau, O., “On Optimum Design in Fluid Mechanics,” Journal of Fluid Mechanics, Vol. 64,
1974, pp. 97–110.

[28] Pironneau, O., “Optimal shape design for elliptic systems,” System Modeling and Optimization,
edited by R. Drenick and F. Kozin, Vol. 38 of Lecture Notes in Control and Information Sciences,
Springer Berlin Heidelberg, 1982, pp. 42–66.

[29] Haug, E. J. and Arora, J. S., “Design Sensitivity Analysis of Elastic Mechanical Systems,”
Computer Methods in Applied Mechanics and Engineering, Vol. 15, No. 1, 7 1978, pp. 35–62.

[30] Jameson, A., “Aerodynamic Design via Control Theory,” Journal of Scientific Computing, Vol. 3,
No. 3, 1988.

[31] Jameson, A., Pierce, N., and Martinelli, L., “Optimum Aerodynamic Design Using the Navier-
Stokes Equations,” 35th Aerospace Sciences Meeting and Exhibit, 1997.

[32] Giles, M. B. and Pierce, N. A., “An Introduction to the Adjoint Approach to Design,” Flow,
Turbulence and Combustion, Vol. 65, No. 3-4, 2000, pp. 393–415.



116 BIBLIOGRAPHY

[33] Ta’asan, S., Kuruvila, G., and Salas, M., “Aerodynamic Design and Optimization in One Shot,”
30th Aerospace Sciences Meeting and Exhibit, 1992.

[34] Borggaard, J., Burkardt, J., Gunzburger, M., Peterson, J., Arian, E., and Ta’asan, S., “Progress
in Systems and Control Theory,” Optimal Design and Control, Vol. 19, Birkhäuser Boston, 1995,
pp. 23–40.

[35] Hazra, S. and Schulz, V., “Simultaneous Pseudo-Timestepping for PDE-Model Based Opti-
mization Problems,” BIT Numerical Mathematics, Vol. 44, No. 3, 2004, pp. 457–472.

[36] Anderson, W. K. and Venkatakrishnan, V., “Aerodynamic Design Optimization on Unstruc-
tured Grids with a Continuous Adjoint Formulation,” Computers and Fluids, Vol. 28, No. 4–5,
1999, pp. 443–480.

[37] Nielsen, E. J. and Diskin, B., “Discrete Adjoint-Based Design for Unsteady Turbulent Flows
on Dynamic Overset Unstructured Grids,” AIAA Journal, Vol. 51, No. 6, 2015/10/26 2013,
pp. 1355–1373.

[38] Martins, J., Alonso, J., and Reuther, J., “A Coupled-Adjoint Sensitivity Analysis Method
for High-Fidelity Aero-Structural Design,” Optimization and Engineering, Vol. 6, No. 1, 2005,
pp. 33–62.

[39] Fidkowski, K. J. and Darmofal, D. L., “Review of Output-Based Error Estimation and Mesh
Adaptation in Computational Fluid Dynamics,” AIAA Journal, Vol. 49, No. 4, 2011, pp. 673–
694.

[40] Liu, D. C. and Nocedal, J., “On the Limited Memory BFGS Method for Large Scale Optimiza-
tion,” Mathematical Programming, Vol. 45, No. 1-3, 1989, pp. 503–528.

[41] Nocedal, J. and Wright, S. J., Numerical Optimization, Springer, New York, 2nd ed., 2006.
[42] Zingg, D. W., Nemec, M., and Pulliam, T. H., “A Comparative Evaluation of Genetic and

Gradient-Based Algorithms Applied to Aerodynamic Optimization,” European Journal of Com-
putational Mechanics, Vol. 17, 2008, pp. 103–126.

[43] Lyu, Z., Xu, Z., and Martins, J. R. R. A., “Benchmarking Optimization Algorithms for Wing
Aerodynamic Design Optimization,” 8th International Conference on Computational Fluid Dy-
namics (ICCFD8), Chengdu, China, July 2014, ICCFD8 2014-0203.

[44] Conn, A., Scheinberg, K., and Vicente, L., Introduction to Derivative-Free Optimization, Society
for Industrial and Applied Mathematics, 2009.

[45] Biros, G. and Ghattas, O., “Parallel Lagrange–Newton–Krylov–Schur Methods for PDE-
Constrained Optimization. Part I: The Krylov–Schur Solver,” SIAM Journal on Scientific Com-
puting, Vol. 27, No. 2, 2005, pp. 687–713.

[46] Hicken, J. and Alonso, J., “Comparison of Reduced- and Full-space Algorithms for PDE-
constrained Optimization,” 51st AIAA Aerospace Sciences Meeting, 2013.

[47] Désidéri, J.-A., Majd, B. A. E., and Janka, A., “Nested and Self-Adaptive Bezier Parameteriza-
tions for Shape Optimization,” Journal of Computational Physics, Vol. 224, 2007, pp. 117–131.

[48] Martinelli, M. and Beux, F., “Multi-Level Gradient-Based Methods and Parametrization in
Aerodynamic Shape Design,” European Journal of Computational Mechanics, Vol. 17, No. 1-2,
2008, pp. 169–197.

[49] Hicken, J. E. and Zingg, D. W., “Induced-Drag Minimization of Nonplanar Geometries Based
on the Euler Equations,” AIAA Journal, Vol. 48, No. 11, 2010, pp. 2564–2575.



BIBLIOGRAPHY 117

[50] Han, X. and Zingg, D., “An Adaptive Geometry Parametrization for Aerodynamic Shape
Optimization,” Optimization and Engineering, Vol. 15, No. 1, 2013, pp. 69–91.

[51] Bisson, F., Nadarajah, S., and Shi-Dong, D., “Adjoint-Based Aerodynamic Optimization of
Benchmark Problems,” 52nd Aerospace Sciences Meeting, National Harbor, MD, January 2014.

[52] Telidetzki, K., Osusky, L., and Zingg, D. W., “Application of Jetstream to a Suite of Aerody-
namic Shape Optimization Problems,” 52nd Aerospace Sciences Meeting, National Harbor, MD,
January 2014.

[53] Poole, D. J., Allen, C. B., and Rendall, T. C. S., “Application of Control Point-Based Aerody-
namic Shape Optimization to Two-Dimensional Drag Minimization,” 52nd Aerospace Sciences
Meeting, National Harbor, MD, January 2014.

[54] Amoignon, O., Navratil, J., and Hradil, J., “Study of Parameterizations in the Project CEDESA,”
52nd Aerospace Sciences Meeting, National Harbor, MD, January 2014.

[55] Vassberg, J. and Jameson, A., “Influence of Shape Parameterization on Aerodynamic Shape
Optimization,” Lectures at the Von Karman Institute, April 2014.
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[165] Gundlach, J. F., Tétrault, P.-A., Gern, F. H., Nagshineh-Pour, A. H., Ko, A., Schetz, J. A., Mason,
W. H., Kapania, R. K., and Grossman, B., “Conceptual Design Studies of a Strut-Braced Wing
Transonic Transport,” Journal of Aircraft, Vol. 37, No. 6, 2015/08/24 2000, pp. 976–983.

[166] Chakraborty, I., Nam, T., Gross, J. R., Mavris, D. N., Schetz, J. A., and Kapania, R. K., “Com-
parative Assessment of Strut-Braced and Truss-Braced Wing Configurations Using Multidis-
ciplinary Design Optimization,” Journal of Aircraft, 2015, pp. 1–12.



124 BIBLIOGRAPHY

[167] Eppler, K., Schmidt, S., Schulz, V., and Ilic, C., “Preconditioning the Pressure Tracking in Fluid
Dynamics by Shape Hessian Information,” Journal of Optimization Theory and Applications,
Vol. 141, No. 3, 2009, pp. 513–531.

[168] Arian, E. and Iollo, A., “Analytic Hessian Derivation for the Quasi-One-Dimensional Euler
Equations,” Journal of Computational Physics, Vol. 228, No. 2, 2009, pp. 476 – 490.

[169] Schmidt, S. and Schulz, V., “Impulse Response Approximations of Discrete Shape Hessians
with Application in CFD,” SIAM Journal on Control and Optimization, Vol. 48, No. 4, 2009,
pp. 2562–2580.

[170] Yang, S., Stadler, G., Moser, R., and Ghattas, O., “A Shape Hessian-Based Boundary Rough-
ness Analysis of Navier–Stokes Flow,” SIAM Journal on Applied Mathematics, Vol. 71, No. 1,
2011, pp. 333–355.

[171] Palacios, F., Economon, T. D., and Alonso, J. J., “Large-scale Aircraft Design using SU2,” 53rd
AIAA Aerospace Sciences Meeting, 2015.

[172] Yang, Y.-L., Yang, Y.-J., Pottmann, H., and Mitra, N. J., “Shape Space Exploration of Con-
strained Meshes,” ACM Trans. Graph., Vol. 30, No. 6, Dec. 2011, pp. 124:1–124:12.

[173] Masters, D. A., Taylor, N. J., Rendall, T., Allen, C. B., and Poole, D. J., “Review of Aerofoil Pa-
rameterisation Methods for Aerodynamic Shape Optimisation,” 53rd AIAA Aerospace Sciences
Meeting, 2015.

[174] Feng, D. and Pulliam, T. H., “Aerodynamic design optimization via reduced Hessian SQP
with solution refining,” Tech. rep., RIACS, 1995.

[175] Schmidt, S. and Schulz, V., “Shape Derivatives for General Objective Functions and the
Incompressible Navier-Stokes Equations,” Control and Cybernetics, Vol. 39, No. 3, 2010, pp. 677–
713.

[176] Schmidt, S., Ilic, C., Schulz, V., and Gauger, N. R., “Three-Dimensional Large-Scale Aerody-
namic Shape Optimization Based on Shape Calculus,” AIAA Journal, Vol. 51, No. 11, 2013,
pp. 2615–2627.

[177] Arian, E. and Vatsa, V. N., “A Preconditioning Method for Shape Optimization Governed
by the Euler Equations,” Tech. rep., Institute for Computer Applications in Science and
Engineering, 1998.

[178] Ghate, D. and Giles, M., “Efficient Hessian Calculation Using Automatic Differentiation,”
25th AIAA Applied Aerodynamics Conference, 2007.

[179] Rumpfkeil, M. P. and Mavriplis, D. J., “Efficient Hessian Calculations using Automatic Dif-
ferentiation and the Adjoint Method with Applications,” AIAA Journal, Vol. 48, No. 10, 2010,
pp. 2406–2417.

[180] Chalot, F., Dinh, Q., Herbin, E., Martin, L., Ravachol, M., and Roge, G., “Estimation of the
Impact of Geometrical Uncertainties on Aerodynamic Coefficients Using CFD,” 10th AIAA
Non-Deterministic Approaches Conference, 2008.

[181] Christianson, B., “Automatic Hessians by Reverse Accumulation,” IMA Journal of Numerical
Analysis, Vol. 12, No. 2, 1992, pp. 135–150.

[182] Floudas, C. A., Pardalos, P. M., and Dixon, L., “Automatic Differentiation: Calculation of the
Hessian,” Encyclopedia of Optimization, Springer US, 2009, pp. 133–137.



BIBLIOGRAPHY 125

[183] Fike, J., Jongsma, S., Alonso, J., and Weide, E. V. D., “Optimization with Gradient and Hes-
sian Information Calculated using Hyper-Dual Numbers,” 29th AIAA Applied Aerodynamics
Conference, 2011.

[184] Sherman, L. L., III, A. C. T., Green, L. L., Newman, P. A., Hou, G. W., and Korivi, V. M.,
“First- and Second-Order Aerodynamic Sensitivity Derivatives via Automatic Differentiation
with Incremental Iterative Methods,” Journal of Computational Physics, Vol. 129, No. 2, 1996,
pp. 307–331.

[185] Haug, E. J., “Second-Order Design Sensitivity Analysis of Structural Systems,” AIAA Journal,
Vol. 19, No. 8, 1981, pp. 1087–1088.

[186] Haftka, R. T., “Second-Order Sensitivity Derivatives in Structural Analysis,” AIAA Journal,
Vol. 20, No. 12, 1982, pp. 1765–1766.

[187] Wang, Z., Navon, I. M., Le Dimet, F. X., and Zou, X., “The Second Order Adjoint Analysis:
Theory and Applications,” Meteorology and Atmospheric Physics, Vol. 50, No. 1-3, 1992, pp. 3–20.

[188] Papadimitriou, D. I. and Giannakoglou, K. C., “Aerodynamic Shape Optimization using
First and Second Order Adjoint and Direct Approaches,” Archives of Computational Methods in
Engineering, Vol. 15, No. 4, 2008, pp. 447–488.

[189] Papadimitriou, D. and Giannakoglou, K., “The Continuous Direct-Adjoint Approach for
Second Order Sensitivities in Viscous Aerodynamic Inverse Design Problems,” Computers and
Fluids, Vol. 38, No. 8, 2009, pp. 1539 – 1548.

[190] Papadimitriou, D. I. and Giannakoglou, K. C., “One-Shot Shape Optimization Using the Exact
Hessian,” ECCOMAS CFD, 2010, pp. 14–17.

[191] Borzı̀, A. and Schulz, V., Computational Optimization of Systems Governed by Partial Differential
Equations, Society for Industrial and Applied Mathematics, 2011.

[192] Jou, W., Huffman, W., Young, D., Melvin, R., Bieterman, M., Hilmes, C., and Johnson, F.,
“Practical Considerations in Aerodynamic Design Optimization,” 12th Computational Fluid
Dynamics Conference, 1995.

[193] Nemec, M. and Aftosmis, M. J., “Toward Automatic Verification of Goal-Oriented Flow
Simulations,” Tech. Memorandum TM-2014-218386, NASA, 2014.



APPENDIX A

FUNCTIONS

This appendix provides pseudo-code for several of the routines referred to in Algorithm A
and elsewhere. The following color scheme is used:

• GREEN: Parametric geometry modeler

• BLACK: Adjoint-based aerodynamic design framework

• ORANGE: Black-box optimizer

• BLUE: Adaptive routine

The first three are expected to be present in existing adjoint-based shape optimization
frameworks. The last category (BLUE) comprises new routines that are specifically required
for adaptive parameterization.
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Function 2: OPTIMIZE(·)
(with generic quasi-Newton optimizer)

Input: Objective J and constraints Cj, shape
deformation function D, initial DV
values X0 and bounds b

Result: Optimized surface S, adjoint solutions
yj, Hessian approximation B

X X0
B I
INITIALIZEOPTIMIZER(J , Cj, X0, b)
repeat

S GENERATESURFACE(D, X)
M GENERATEFLOWMESH(S)
Q SOLVEFLOW(M)
J , Cj  EVALUATEFUNCTIONALS(Q, S)
yj  SOLVEADJOINTS(M, Q)
foreach Xi in X do

∂S
∂Xi
 SHAPEDERIVATIVE(D, Xi)

∂J
∂Xi
 PROJECTGRAD(yo , ∂S

∂Xi
)

foreach Cj in C do
∂Cj
∂Xi
 PROJECTGRAD(yj, ∂S

∂Xi
)

end
end

X, B OPTSTEP(X, J , Cj, ∂J
∂X ,

∂Cj
∂X , B)

until convergence of J and Cj

Function 3: GETCANDIDATES(·)
Input: Current shape control tree C, depth d,

maximum depth dmax
Result: Candidate refinement locations Cc

Cc  ∆
foreach C in C do

if depth(C) < dmax then
if C+ L 62 Cc then

Add C+ L to Cc

end
if C+ R 62 Cc then

Add C+ R to Cc

end
end

end
// Recurse to deeper levels

if d > 1 then
Cd  GETCANDIDATES(Cc, d� 1, dmax)
Add Cd to Cc

end

Function 4: POTENTIAL(·)
Input: Parameterization function P ; surface S, candidate

shape control C, previous DV bounds b and
quasi-Newton Hessian approximation B, adjoint
solutions yo , yj

Result: Estimated potential for objective reduction DJ?

Dc, X P(S, C)
foreach X in X do

∂S
∂X  SHAPEDERIVATIVE(D, X)
∂J
∂X  PROJECTGRAD(yo , ∂S

∂X )
foreach Cj in Ca do

∂Cj
∂X  PROJECTGRAD(yj, ∂S

∂X )
end

end
b PROLONG(Dk�1, Dc, b)

B PROLONG(Dk�1, Dc, B)

DJ?  f
⇣

∂J
∂X , ∂Ca

∂X , b, B
⌘

Function 5: ADAPTSHAPECONTROL(·)
Input: Parameterization function P , current and candidate

shape control C, Cc, surface S, adjoint solutions yj,
Hessian approximation B, DV bounds b,
auto-growth criteria r and w.

Result: Selected shape control C

// Phase 1. Build priority queue

q ∆
DJ 0

?  POTENTIAL(P , S, C, yj, b, B)
foreach C in Cc do

DJ?  POTENTIAL(P , S, C + C, yj, b, B)

I  DJ? � DJ 0
?

q.ADD(C, I)
end
// Phase 2. Greedy adaptation

Cbest, I1  q.POP()

C C + Cbest

DJ 0
?  DJ 0

? + I1

repeat
q.MARKALLSTALE()
repeat

foreach C in q.BEST(Nw) do
DJ?  POTENTIAL(P , S, C + C, yj, b, B)

I  DJ? � DJ 0
?

q.UPDATE(C, I)
end

until q.BEST(1) is fresh
Cbest, Ibest  q.POP()

C C + Cbest

DJ 0
?  DJ 0

? + Ibest

until for w consecutive passes Ibest

I1 < r
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Cost of ADAPTSHAPECONTROL(·)

Let NDV be the number of design variables before adaptation begins, Nc the number of
candidates, Nadd the number of parameters that will be added, and Nw the number of
the top-ranked candidates to be re-evaluated on each pass. Clearly Nadd  Nc, and from
Section 2.3.1 Nc ⇡ 2Dd�1NDV . From Algorithm 4, each indicator evaluation costs

CI = Nparam(Css + NyCproj) (A.1)

where Ny is the number of adjoint projections involved, Nparam is the current number of
design variables, Css is the cost of a shape sensitivity computation and Cproj is the cost of an
adjoint inner product. For the first phase, Nc indicator evaluations are required to build the
initial priority queue, during which Nparam = NDV + 1. The cost for the first phase is thus

C1 = 2Dd�1NDV(NDV + 1)(Css + NyCproj) (A.2)

During the second phase, the indicator is computed NwNadd times, and on average, Nparam =

NDV + Nadd
2 . Then the cost of the second phase it at most

C2 
1
2

NwN2
DV2Dd�1(2 + 2Dd�1)(Css + NyCproj) (A.3)

Thus the total cost of the adaptation procedure is bounded by

C  N2
DV2Dd�1

✓
1 +

1
2

Nw(2 + 2Dd�1)

◆
(Css + NyCproj) (A.4)

Asymptotically, this cost is O(N2
DV), but would have been O(N3

DV) if the entire queue
were re-evalauted on every pass (Nw = Nc). This also demonstrates that the cost depends
linearly on the window size Nw and exponentially on the search depth d.



APPENDIX B

DISCRETIZATION OF SHAPE HESSIANS

This appendix examines Hessian matrices with respect to discretized shape control. Unsur-
prisingly, the Hessian entries depend on the dimensions of the shape deformation modes.
It is less intuitively obvious that this dependence behaves differently for different objectives.
This impacts both the refinement indicator (Section 3.2.2) and the Hessian prolongation
operator (Section 3.3). The scope of this appendix is restricted to two common objective
functionals, which will be sufficient for the purposes of this thesis, though far from a com-
prehensive treatment of the subject.

B.1 Hessian Discretization

We will consider the the objective Hessian matrix H with respect to the design variables:

Hi,j :=
∂

∂Xj

∂J
∂Xi

=
∂

∂Xj

⌧
∂J
∂S

,
∂S

∂Xi

�
(B.1)

=

⌧
∂

∂Xj

✓
∂J
∂S

◆
,

∂S

∂Xi

�
+

⌧
∂J
∂S

,
∂

∂Xj

∂S

∂Xi

�
(B.2)

(Eq. 3.7)
=

*
H ∂S

∂Xj| {z }
A

,
∂S

∂Xi|{z}
B

+
+

*
∂J
∂S|{z}
C

,
⇢

⇢
⇢

⇢⇢>
0 if D linear

∂2S

∂Xi∂Xj| {z }
D

+
(B.3)
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Term A involves the Hessian operator of the objective H, which depends on the type of
objective function. Terms B and C are familiar from Equation (3.14). Term D is the second
derivative of the shape with respect to the design variables, which measures the nonlin-
earity of the deformation function D. To simplify, I will assume that deformation is linear
with respect to the design variables, i.e. DS = ADX, where A is constant.1 Many common
deformation functions are linear, including radial basis functions, free-form deformation,
and Hicks-Henne bump functions. Examples of nonlinear deformation include any form
of rotation, such as twist or dihedral, although for small rotations I observe its effects to be
small (see the top frame of Figure 5.3). If term D is significant, it can be computed either
analytically by the modeler, or by NDV finite-differences of a modeler that provides ∂S

∂X , or
by N2

DV finite-differences of an undifferentiated modeler. However, one would then be
faced with N2

DV gradient projections of ∂J
∂S into term D.

Coupling of Objective and Shape Control

In Equation (3.14), note that ∂F
∂Xi

is computed via two independent terms, ∂F
∂S and ∂S

∂X . The
objective sensitivities are completely decoupled from the deformation mode shapes. To see
this, consider how ∂F

∂X changes as the shape control is refined. In Equation (3.15) note that
∂F
∂S is constant for a given shape S. Then, taking h constant, ∂F

∂Xi
⇠ Ai. Cutting the width of

a deformation mode in half causes the corresponding gradient entry to be cut in half in 2D

(or divided by four in 3D). If the shape modes are localized (have compact support), then
in the limit of refinement ∂F

∂Xi
! 0 at O(Ai).

Because gradient projection does not couple the objective and shape control, this scal-
ing should apply to all functionals (for non-overlapping modes). To verify this, consider
Figure B.1, which shows exact gradients evaluated at different shape control resolutions,
for three completely different classes of objective (shape matching, 2D surface pressure
matching, and 3D off-body pressure matching). The left column shows the unscaled ver-
sions of the gradients. As the shape control is uniformly refined, the magnitude of each
individual component decreases. That this rate of decrease is exactly Ai can be seen in the
right column of Figure B.1, which multiplies the gradients by A0

i
Ak

i
. As the shape control is

refined, the lines more closely match each other. This indicates that the gradient density
is consistent, and that the identified scaling factor is correct for all the functionals. Note
that the largest sources of error are in regions where the gradient density varies rapidly
compared to the resolution of the shape control.

1Note that the parameterization function P is still nonlinear. In other words, A may be a nonlinear function
of C, but once parameterized, the deformations are linear with respect to X.
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Figure B.1: Unscaled gradients (left) vs. scaled gradients (right). Top row: Shape-matching objective
JA. Middle row: Pressure-matching objective JB. For these top two rows, the left/right groups
within each plot correspond to camber/thickness variables. Bottom row: Inverse off-body pressure-
matching objective JD.

0

1000

2000

3000

4000

5000

H
i,
i

Level1

Level2

Level3

0 8 16 24 32 40 48 56 64

Design Variable i

�45

�30

�15

0

15

30

G
i

0

1000

2000

3000

4000

5000

H
i,
i

Level1

Level2

Level3

0 8 16 24 32 40 48 56 64

Design Variable i

�45

�30

�15

0

15

30

G
i

0.0

0.3

0.6

0.9

1.2

1.5

H
i,
i

⇥107

Level1

Level2

Level3

0 8 16 24 32 40 48 56 64

Design Variable i

�18000

�12000

�6000

0

6000

12000

G
i

0.0

0.3

0.6

0.9

1.2

1.5

H
i,
i

⇥107

Level1

Level2

Level3

0 8 16 24 32 40 48 56 64

Design Variable i

�80000

�60000

�40000

�20000

0

20000

G
i



132 APPENDIX B. DISCRETIZATION OF SHAPE HESSIANS

The Hessian scaling is not so simple. To compute H (Equation (B.3)) and DJ? (Equa-
tion (3.12)) involve evaluating the result of H or H�1 acting on a surface vector (H ∂S

∂Xj
and

H�1
⇣

∂J
∂S + lj

∂Ca
j

∂S

⌘
, respectively2). Thus when using the Hessian, which is involved in both

the second-order refinement indicator and in the prolongation operator, we must account
for the coupling between the objective function and the shape modes. This requires special
treatment of the Hessian, which is the motivating purpose for this appendix.

Discretization

If H is a local operator, then with our assumption of a non-overlapping discretization of the
shape control and linear deformation, H is diagonal. Taking H ∂S

∂Xi
to be its average value

over region i, Equation (B.3) can then be approximated as

✓
H ∂S

∂Xi

◆

i
⇡ Hi,i

Aih
(B.4)

To proceed we need to know the form of H. Examples for two specific objective functions
are now given. Recall the simplifying assumptions that have been made thus far:

1. The surface deformation is sufficiently linear with respect to the design variables.
2. The deformation modes are localized (have compact support), so that they form a

nearly non-overlapping discretization of the continuous shape control.
3. Within a given shape control tree, the deformation modes have consistent shapes and

characteristic magnitudes (or units).

Geometric Shape Matching

First, consider a geometric shape-matching (GSM) objective function:

J GSM =
1
2

Z

S
(y(x)� y⇤(x))2dA(x) (B.5)

where y(x) is the shape control, and y⇤(x) is the target shape. The objective is a quadratic
function directly of the shape control, and so it is clear that H = I (the identity operator).
Then ✓

H ∂S

∂Xi

◆

i
=

✓
∂S

∂Xi

◆

i
⇡ h

2Note that in each case, the operand is different. This disconnect is what will give rise to a scale-dependent
term in the indicator.
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Then from Equation (B.4) the Hessian diagonal entries scale as Hi,i ⇠ Aih2. If the shape
modes have compact support, then in the limit of refinement, Hi,i ! 0, like the gradients.

2D Surface Pressure-Based Functionals

Now consider an aerodynamic pressure-matching functional defined as a surface integral
of discrepancies from a target pressure profile:

J P =
1
2

Z

S
(p(x)� p⇤(x))2dx (B.6)

where p⇤(x) is the target profile. Using Fourier mode analysis, Arian and Ta’asan show
that, for 2D inviscid flow when close to the target profile, H is a local differential operator
of the form K ∂2

∂x2 , where K involves the local Mach number, velocity and density [112]. This
implies that the discrete Hessian matrix entries depend on the geometric curvature of the
deformation modes.3 Design variables enacting deformations with sharper curvature will
therefore have higher second-derivatives. In this case,

✓
H ∂S

∂Xi

◆

i
= Ki

✓
∂2

∂x2
∂S

∂Xi

◆

i
⇡ Kih

A2
i

Then with Equation (B.4) the diagonal Hessian entries scale as HP
i,i ⇠ h2

Ai
. If the shape

modes have compact support, then in the limit of refinement HP
i,i ! •. This leads to

ill-conditioning for high-frequency deformation modes, as noted in [112].

Table B.1: Scaling of gradient and Hessian diago-
nal with shape mode dimensions for different ob-
jective functionals. The final column shows that
a naively computed importance indicator can be
(falsely) scale-dependent.

Objective Gi Hi,i DJ? = 1
2 GTH�1G

JGSM Aih Aih2 1

JP Aih h2

Ai
A2

i

The most important observa-
tion of this section is given in Ta-
ble B.1, which shows that the Hes-
sian entries depend both on the
type of objective function and on
the rough dimensions of the defor-
mation modes. The following sec-
tions show how this impacts the
Newton step, the refinement indi-
cator, and the Hessian prolonga-
tion operator.

3Of course the Hessian also depends on the curvature of the surface itself (via the flow variables), but this
is already included in K.
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B.2 Newton Step Scale-Dependence

Equation (3.16) gives an estimate of the potential design improvement in a finite, non-
overlapping parameterization. Computing this involves the discretized Newton step:

(dS?)i =

 
H�1

 
∂J
∂S

+ lj
∂Ca

j

∂S

!!

i

(B.7)

Now Equation (B.7) must be expressed in terms of the gradient vector and the Hessian
matrix. Table B.1 shows that naively taking the standard black-box quasi-Newton step
(dS?)i ⇡ dXi? ⌘ (H�1G)i would result in a falsely scale-dependent indicator.4

For an arbitrary objective, it is unclear how to proceed. However, motivated by [112], I
remark that, for the two objectives considered so far, the Hessian can be decomposed into
two terms:

H(·) = K� (DH(·))

H�1(·) =
1

K
� (D�1

H (·))
(B.8)

where � represents element-wise (Hadamard) multiplication. K is a continuous surface
vector that encodes effects due to the static geometry S, while DH is an operator that encodes
dependence on the surface deformation. This decomposition appears to be valid for many
common objective functions (e.g. [112, 170]), but it may not be completely general. Note
that the static effects K appear in both the Hessian matrix (Equation (B.3)) and the Newton
step (Equation (B.7)). I will use these two equations to eliminate K. Despite not claiming
to know K accurately enough to directly compute the Hessian, we rely on the fact that its
local value is consistent, in a continuous sense.

Using Equation (B.8), Equation (B.4) becomes

Ki

✓
DH

∂S

∂Xi

◆

i
⇡ Hi,i

Aih
(B.9)

Combining this with Equation (B.7) and again using Equation (B.8), we obtain

(dS)i ⇡
Aih
Hi,i

✓
DH

∂S

∂Xi

◆

i

 
D�1

H

 
∂J
∂S

+ lj
∂Ca

j

∂S

!!

i

(B.10)

This is the discretized Newton step for any finite search space subject to the conditions
4This also raises questions about the suitability of standard black-box optimizers, which use update formulas

based on these aggregated gradients, for shape optimization with high-frequency modes. I will not address
this concern here.
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enumerated earlier, plus Equation (B.8). This is a generic expression for any objective
function. Next I examine the form of DH for the two objective functions examined here.

Geometric Shape Matching

For the GSM objective (Equation (B.5)), H = I , which is trivially decomposed into DH = I
and K = 1. Thus ✓

DH
∂S

∂Xi

◆

i
=

✓
∂S

∂Xi

◆

i
⇡ h (B.11)

Then with Equation (3.15), Equation (B.10) simplifies to

(dS?)i ⇡
h

Hi,i

 
∂J
∂Xi

+ lj
∂Ca

j

∂Xi

!
(B.12)

In this special case, it so happens that (dS?)i = dXi, the standard Newton step used in
quasi-Newton black-box solvers.

2D Surface Pressure-Based Functionals

For the 2D pressure-matching functional (Equation (B.6)), DH = ∂2

∂x2 and K involves Mach
number, velocity and density [112]. Then

✓
DH

∂S

∂Xi

◆

i
=

✓
∂2

∂x2
∂S

∂Xi

◆

i
⇡ h

A2
i

(B.13)

The inverse of the differential curvature operator is a Laplacian smoothing operator, which
is a commonly used preconditioner for aerodynamic optimization [30, 175, 176].5 For clarity,

define Zi := ∂J
∂Xi

+ lj
∂Ca

j
∂Xi

. Then with Equation (3.15),

 
D�1

H

 
∂J
∂S

+ l
∂Ca

j

∂S

!!

i

⇡ 1
h

✓
1
4

Zi�1

Ai�1
+

1
2

Zi
Ai

+
1
4

Zi+1

Ai+1

◆
(B.14)

Substituting Equations (B.13) and (B.14) into Equation (B.10), we have

(dS?)i ⇡
h
Ai

1
Hi,i

✓
1
4

Zi�1

Ai�1
+

1
2

Zi
Ai

+
1
4

Zi+1

Ai+1

◆
(B.15)

5Note that in those cases the smoothing is spatially uniform. [177] shows how to apply it with locally
varying strength. By contrast to all these approaches, the present approach explicitly accounts for constraints.
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This confirms that for the pressure-matching functional, (dS?)i 6= �H�1Z. Unlike in shape
matching, where each station could be considered completely independently, here neigh-
boring stations are coupled via the last term in Equation (B.15). A second distinction is the
presence of scale-dependence ⇠ 1

A2
i
.

Other Objectives

The decomposition H = K�DH appears to be valid for other objective functions as well.
Lewis and Nash show that this is valid for many model problems, because the optimiza-
tion Hessian operator is often elliptic, even when the governing equations themselves are
hyperbolic [85]. The decomposition also appears to be valid for drag in 2D Navier-Stokes
flow under certain conditions [170], potential flow [167], and drag or pressure matching in
quasi-1D inviscid flow [113, 168].

In [112], it is shown to be valid for 3D inviscid pressure matching, but in that case DH
is a pseudo-differential, non-local operator. In this case, the refinement indicator might
become non-compact, i.e. involving sensitivity information from the entire domain. For
the purposes of developing local preconditioners, some authors simply tune a differential
operator to approximate the true behavior [169].

Quasi-Hessian-free Approach

It may be the case that we do not trust the quasi-Newton Hessian to sufficiently accurately
predict the best shape control. However, in these cases, it would still be desirable for
the refinement indicator to be reflect to the objective-dependent trends in DH. Following
Table B.1, for shape matching we should take Hi,i = Ai, while for pressure matching Hi,i =
1
Ai

. This is equivalent to assuming that K is uniform. Substituting these into Equation (B.12)
and Equation (B.15), we obtain

(dS?)
GSM,⇢H
i ⇡ h

Ai

 
∂J
∂Xi

+ lj
∂Ca

j

∂Xi

!
(B.16)

(dS?)
GSM,⇢H
i ⇡ h

✓
1
4

Zi�1

Ai�1
+

1
2

Zi
Ai

+
1
4

Zi+1

Ai+1

◆
(B.17)

These are not expected to be accurate, but will at least reflect the underlying scale-dependence
of the shape control’s influence on second-order information.
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B.3 Hessian Prolongation Operator

Section 3.3 proposes estimating the Hessian in a candidate search space from the quasi-
Newton approximation in the previous search space. This requires a Hessian prolongation
operator, which must also account for scale-dependent effects. Under the same assumptions
as before, the Hessian diagonal entry for design variable i at shape control level k can be
expressed as

Hk
i,i =

*
∂S

∂Xk
i

, Kk
i

 
DH

∂S

∂Xk
i

!

i

+
⇡ hKk

i

 
DH

∂S

∂Xk
i

!

i

Ak
i (B.18)

As before, K represents effects that depend only on the static surface, not on the deformation
modes. Thus Kk+1 ⌘ Kk for any refinement of the shape control. To estimate the value of
Kk+1

j for a new controller Xk+1
j , we can linearly interpolate between the values for the

nearest neighboring controllers, Xk
L and Xk

R (see Figure 2.8):

Kk+1
j ⇡ (1� u)Kk

L + uKk
R (B.19)

where u is the fraction of the geodesic (unskewed parametric) distance between L and R at
which j is located. Then the Hessian entry for this new parameter is approximated as

Hk+1
j,j ⇡ h

⇣
(1� u)Kk

L + uKk
R

⌘ 
DH

∂S

∂Xk+1
j

!

j

Ak+1
j (B.20)

Solving Equation (B.18) for K and substituting this in for KL and KR in Equation (B.20), we
obtain

Hk+1
j,j ⇡

0

B@(1� u)
Hk

L,L

Ak
L

⇣
DH

∂S
∂Xk

L

⌘

L

+ u
Hk

R,R

Ak
R

⇣
DH

∂S
∂Xk

R

⌘

R

1

CA

 
DH

∂S

∂Xk+1
j

!

j

Ak+1
j (B.21)

This is a generic prolongation operator, subject to the various assumptions we have made.
We can then simplify it for specific objective functionals.

Geometric Shape Matching

As a trivial example, consider the GSM functional, Equation (B.5). Although Hk+1
0 could be

computed exactly in this analytic case, let us momentarily pretend that it is unobtainable.
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Using Equation (B.11), Equation (B.21) becomes

Hk+1
j,j ⇡ (1� u)Hk

L,L
Ak+1

j

Ak
L

+ uHk
R,R

Ak+1
j

Ak
R

(B.22)

2D Pressure Matching

For the 2D inverse surface pressure-matching functional (Equation (B.6)), we obtain a dif-
ferent prolongation operator. Using Equation (B.13), Equation (B.21) becomes

Hk+1
j,j ⇡ (1� u)Hk

L,L
Ak

L

Ak+1
j

+ uHk
R,R

Ak
R

Ak+1
j

(B.23)

B.3.1 Verification

This section will verify that the prolongation operators are appropriate for various func-
tionals under consideration. For each case, while holding the shape constant, I compute
the Hessian diagonal across a range of uniformly-refined resolutions of shape control. Ulti-
mately, the goal is to transfer a quasi-Newton approximation, but for verification purposes
it is important to isolate the prolongation operator from any other approximations or errors.
Therefore I compute the “true” Hessian diagonal by finite-differencing the adjoint-provided
gradients. This proved to be sufficiently accurate for these relatively smooth cases. Four
objective functionals are evaluated:

1. Geometric shape matching for an airfoil (Equation (B.5))

2. Surface pressure matching for an airfoil (Equation (B.6)) at M• = 0.3 (see Section 5.2
for the setup)

3. Drag on the NACA 0012 airfoil at Mach 0.85

4. Drag on a diamond airfoil at Mach 2.0

To evaluate the claim that the specific details of the deformation modes are unimportant
compared to the gross relative dimensions Ai, these tests use three different shape defor-
mation bases (all local, per our prior restriction):

1. Cubic interpolation bumps — Cases 1 and 3

2. Radial basis functions (see Section 4.4) — Case 2

3. Linear “hat”-shaped bumps — Case 4
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Figure B.2: Hessian diagonal for various objectives and at various shape control resolutions, trans-
formed to be resolution-invariant, using Equation (B.22) (frame B.2a) or Equation (B.23) (other
frames)
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Figure B.2 shows the results of applying Equation (B.22) or Equation (B.23) to the Hes-
sian diagonals for Cases 1-4 at different shape control resolutions. In each case, as the
shape control is refined, the lines more closely match each other. This indicates that the
transformations above are properly accounting for the scale dependence of the Hessian op-
erator. It also indicates that, as long as the deformation basis remains consistent, its details
can be ignored in the prolongation. Although Equation (B.23) was derived for a 2D surface
pressure-matching functional, it also appears to be correct for drag functionals (Figures B.2c
and B.2d). Both involve integrations of pressure over the surface; it may be that all similar
2D surface pressure-based functionals support a similar prolongation operator, but I will
not attempt to address that question here.

As with the gradients (Figure B.1), the largest sources of error are in regions where
the Hessian density varies rapidly compared to the resolution of the shape control. For
example, at the trailing edge discontinuity we see the suboptimal effects of extrapolation
(middle of Figures B.2a and B.2b). Similarly, Figure B.2d shows a sharpening discontinuity
in the Hessian due to the shock anchored to the peak of the diamond airfoil. At the coarsest
shape control levels, the prolonged Hessian can be noticeably different from the finer levels
(e.g. in Figure B.2d). This indicates that the coarse shape control does not adequately reflect
the finer levels.
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Figure B.3: 3D off-body pressure functional: Hessian diagonal at various shape control resolutions.
Left to right traverses the radius control stations from tip of forebody to the base (see Figure 5.18).
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We should be cautious about extending this correction too far. Figure B.3 shows an
attempt to apply this same correction (Equation (B.23)) to a 3D off-body pressure-matching
functional at Mach 1.6. The details of the setup are given in Section 5.3. Comparing Fig-
ure B.3a to Figure B.3b, we see that the prolongation operator does cluster the curves better,
indicating that the correction is helping somewhat. However, it does not appear that the re-
sults are converging to a consistent curve. This may indicate that there are other significant
terms in the Hessian operator that are Equation (B.23) does not account for. Nevertheless,
as it appears to help somewhat, I did use it for the inverse off-body design problem in
Section 5.3.

B.4 Alternative Techniques for Computing Hessians

Because of the promise of increased optimization efficiency6, many approaches to com-
puting or estimating Hessians have been explored. Of the methods for computing either
the exact Hessian itself, or Hessian-vector products, those with the lowest cost generally
require the most invasive modifications to the design codes. Several authors have ana-
lytically derived the Hessian (or its most important terms) for specific problem classes7.
Although this approach can provide insight into the behavior of a problem and can be
used to develop effective optimization preconditioners [177], the procedure is difficult to
generalize. One obvious general technique is to use finite-differencing, which requires
O(NDV) flow and adjoint solutions. The Hessian can also be computed by double auto-
matic differentiation [181, 182], though this is also computationally prohibitive [179]. To
address concerns over numerical accuracy, hyper-dual numbers (an extension of complex-
step methods) have been used to compute second derivatives to machine precision, but
the cost is even higher than finite differencing [183]. These approaches can be automated
somewhat, but still involve substantial modification to the design tools.

The fastest general methods for computing exact Hessians combine one of the above
methods with an adjoint approach. For example, several authors combine automatic dif-
ferentiation with an adjoint [178, 179, 184]. Others use various second-order adjoint ap-
proaches [185–191]. Although these approaches vary somewhat in cost, the solution of
at least O(NDV) linear PDES appears unavoidable. This is generally out of the question
except for very low numbers of design variables, making it unsatisfactory for adaptive
parameterization. Some approaches seek to reduce the cost by solving the second-order

6As well as for extrapolation [178, 179] or design under uncertainty [180].
7Examples relevant to aerospace include pressure matching in potential flow [167], inviscid flow [112], and

quasi-1D inviscid flow [113, 168]; minimizing drag in Stokes flow [169]; and minimizing drag due to wall
roughness [170]. The approach is used in other fields as well, such as tomography [89].
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adjoints inexactly with inexact Newton-Krylov methods [6, 46]. This can lead to payoffs
when there are large numbers of design variables but is generally incompatible with a
standard first-order adjoint framework.

A number of Hessian approximations are used in the literature, each motivated by the
promise of obtaining substantial improvement over Hessian-free methods, while avoiding
the excessive cost of the exact-Hessian approaches above. In assessing these techniques,
caution must be exercised. Unlike in quasi-Newton optimization, which self-corrects the
Hessian over several iterations, estimating the Hessian inaccurately could severely bias
the refinement towards inappropriate regions. One can always manually set H = I · s,
where s is a vector of scale factors, ideally approximating the diagonal of the Hessian. This
is commonly done in optimization to improve conditioning, but requires manual tuning,
which we want to avoid. It has long been recognized that for certain specific cases a Laplace-
Beltrami smoothing operator is a reasonable surrogate of the Hessian and can be used to
precondition the optimization [30, 175, 176]. However, for general problem classes this
is not valid, although it may still help smooth the optimization [112, 169]. For attainable
inverse functionals, where the objective is a sum of quadratic deviations of functionals from
their targets

J =
1
2 Â

k
wk(Fk(X)�F ⇤k )2 (B.24)

the Hessian is

∂2J
∂Xi∂Xj

= Â
k

wk
∂Fk
∂Xi

∂Fk
∂Xj

+ Â
k

wk(Fk(X)�F ⇤k )
∂2Fk

∂Xi∂Xj
(B.25)

It has often been noted that, “sufficiently” close to the target, the second term becomes
negligible [110, 112, 179, 192]. The remaining term is essentially free, since it involves only
first derivatives that will have already been computed. Although any design problem could
indeed be converted into this form, doing so is problematic. The optimal design is sensitive
to the targets F ⇤k . To justify the approximation they must be attainable, but to ensure that
the objective is sufficiently aggressive, they should be only just barely attainable. Second, in
certain cases this approximation may rapidly become more inaccurate as the shape control
is refined. As shown in Table B.1, for inviscid flow, as the width A of the deformation
modes shrinks, the Hessian diagonal (term ∂2Fk

∂Xi∂Xj
in Equation (B.25)) tends to infinity at

O( 1
A ). In a progressive parameterization approach with localized modes, the proximity to

the targets (Fk(X)� F ⇤k ) would need to shrink at O(A) to compensate and maintain the
accuracy of the assumption.



APPENDIX C

DISCRETIZATION ERROR CONTROL IN

OPTIMIZATION

The primary goal of adaptive shape control is to accelerate the rate of design improvement
with respect to the number of design simulations. A complementary approach is to reduce
the average cost of each simulation. This can be done using a variable-fidelity approach,
where the mesh is progressively refined as the optimum is approached. The bulk of the
design improvement can be obtained using coarser flow meshes, with higher resolution
added only when necessary to accurately resolve the design space near the optimum. It is
advantageous to combine this sequencing approach with output-based mesh adaptation,
which focuses resolution on the regions essential to accurately compute the aerodynamic
objective and constraints. This also provides error estimates that can be used both to evalu-
ate the credibility of an optimal design and to set accuracy targets throughout optimization.

In this work, a flow mesh is automatically generated for each design iteration. Using
the method of adjoint-weighted residuals [193], the mesh is adapted to reduce error in
an aerodynamic functional.1 This also provides mesh convergence information for each
design, along with an estimate of the final discretization error. An example of this process
is shown in Figure C.1, which is taken from the symmetric airfoil optimization problem in
Section 6.1. Various design iterations required radically different meshes, in terms of both

1When there are multiple aerodynamic design functionals, it is often convenient to define a combined mesh
adaptation functional that seeks to simultaneously resolve all the outputs [94].

143



144 APPENDIX C. DISCRETIZATION ERROR CONTROL IN OPTIMIZATION

Design 5 Final

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

104

Cells

0.047

0.048

0.049

0.05

0.051

0.052

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:43:47 2014

10
3

10
4

C
ells

0.05 0.1
Functional (JH)

10
3

C
ells

10
-5

10
-4

10
-3

10
-2

Error

Error-Indicator |
2 | J
∆J

0
500

1000
1500

2000
M

G
 C

ycles

0
0.05 0.1
0.15
0.2

Functional

/nobackupp8/ganders1/benchm
arks/naca0012/prog3/param

00/design000/M
0.85A0B0_D

P1

Iterative C
onvergence

Thu N
ov 20 14:42:07 2014

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

NACA0012

±E

Design 5 Design 59 

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

104

Cells

0.047

0.048

0.049

0.05

0.051

0.052

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:43:47 2014

10
3

10
4

C
ells

0.05 0.1

Functional (JH)

10
3

C
ells

10
-5

10
-4

10
-3

10
-2

Error

Error-Indicator |
2 | J
∆J

0
500

1000
1500

2000
M

G
 C

ycles

0
0.05 0.1
0.15
0.2

Functional

/nobackupp8/ganders1/benchm
arks/naca0012/prog3/param

00/design000/M
0.85A0B0_D

P1

Iterative C
onvergence

Thu N
ov 20 14:42:07 2014

103 104

Cells

0.05

0.1

Fu
nc

tio
na

l (
J H

)

103

Cells

10-5

10-4

10-3

10-2

Er
ro

r

Error-Indicator |
2 | J
∆J

0 500 1000 1500 2000
MG Cycles

0
0.05

0.1
0.15
0.2

Fu
nc

tio
na

l

/nobackupp8/ganders1/benchmarks/naca0012/prog3/param00/design000/M0.85A0B0_DP1

Iterative Convergence

Thu Nov 20 14:42:07 2014

NACA0012

Figure 5: Top: Flow meshes adapted to accurately compute pressure drag at various airfoil shapes encountered
during optimization of Case I. Bottom: Mach contours. Right : Convergence of drag functional with mesh refinement
for the baseline design. Bars indicate uncertainty in drag and properly bound the actual changes in the functional
value.

e = |Jh(Qh) � JH(QH)| (1)

Once the mesh refinement process is in the asymptotic region, the estimate of the remaining error can be
expressed as

E =
��

i=0

1

4i
=

4

3
e (2)

assuming second order convergence, or E = 2e for first order convergence.
In contrast, under a typical fixed-mesh approach, an initial mesh convergence study is performed to

determine a mesh appropriate for the baseline design, and then that same mesh is used for all designs. As the
shape deviates more and more from the baseline, the initial mesh becomes less appropriate, leading to higher
solution error as the design evolves. A convergence study on the final design does not solve the problem,
because the optimization was being driven by flow solutions with ever-worsening accuracy, casting doubt on
the optimality of the final design. In our approach, accuracy is selectively increased while approaching the
optimum. This both saves expense up-front and also gives more credibility to the final design.

Talk about approach to adaptation for multiple functionals. Talk about error-tightening approach in more
concrete terms. An advantage of non-tiered error control is the ability to stop anywhere and trust that result.

C. Curve Parameterization by Direct Manipulation

D. Wing Parameterization
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Figure 6: Wing planform parameterization
(Blender plugin)

For the two wing design problems, we use a deformer that
interpolates both twist and airfoil section deformation in the
spanwise direction. The deformer is illustrated in Figure 6. At
each station a curve deformer (described in the previous sec-
tion) sets the airfoil shape, after which the twist is applied. The
twist is in the streamwise plane about a user-defined axis and is
linearly interpolated between successive stations. Control sta-
tions can be arbitrarily spaced along the span, but for this work
we maintain strict regularity by refining only at the midpoints
between consecutive stations.
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Figure C.1: Symmetric Airfoil: (See Section 6.1 for case details.) Top: Flow meshes adapted to ac-
curately compute pressure drag for three airfoils encountered during optimization. Bottom: Mach
contours. Right: Convergence of drag functional with mesh refinement for the baseline. Bars indi-
cate uncertainty in drag and asymptotically bound the actual changes in the functional.

resolution and distribution. An example of convergence of the drag functional and its error
bounds is shown in the right frame of Figure C.1.

One major advantage of adaptive meshing during optimization is that it removes the
burden of trying to hand-craft a fixed mesh that anticipates how critical flow features will
evolve as the design progresses. As the shape deviates more and more from the baseline,
a fixed mesh typically becomes less appropriate, leading to higher solution error as the
design evolves. This automatic adaptive meshing approach is expected to be especially
advantageous for unfamiliar problems that exhibit substantial, unpredictable differences
between the initial and final designs. Naturally, a naive and indiscriminate application of
high-resolution adaptive meshing can greatly increase the computational expense. How-
ever, because we can monitor and control the output error, the solution accuracy can be
selectively reduced during the early stages of optimization and then automatically sharp-
ened as the design approaches optimality [101]. This reduces up-front costs (in both user
and computational time) and also gives more credibility to the final design.

As an example of the potential for computational savings, consider the symmetric airfoil
problem from Section 6.1, where I used a constant error target throughout the optimization.
The cell count required to satisfy this tolerance gradually increased throughout optimiza-
tion (Table 6.1). This indicates that the optimal design has become much more sensitive
to the discretization. This is not surprising — the final design has weaker shocks and a



145

much larger zone of dependence, which makes the effect of numerical dissipation more
noticeable. The bulk of the design improvement can, however, be obtained much more
efficiently by starting with a relaxed error tolerance and progressively tightening it. Fig-
ure C.2a shows that this approach results in significant cost savings over a fixed-tolerance
approach. Moreover, optimization is performed at high accuracy near the optimum, which
ensures the credibility of the final design.
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(b) Top: Constant error tolerance and actual
error estimate history. (Tolerance cannot al-
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lowed mesh refinement depth.) Center: Pro-
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Figure C.2: Case I: Comparison of fixed error control vs. progressive error control. Both cases were
performed with identical parameterization strategies and on identical hardware (2013 MacBook Pro
with a 2.6GHz Intel Core i7 and 16GB of memory).
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