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Abstract

This report concerns research performed in fulfillment of a 2.5-year NASA Seedling Fund
grant to develop an adaptive shape parameterization approach for aerodynamic optimiza-
tion of discrete geometries. The overarching motivations for this work were the poten-
tial to radically reduce manual setup time and achieve faster and more robust design
improvement, especially for problems where many design variables are required. The
primary objective was to develop a fully-functional prototype system that automatically
and adaptively parameterizes discrete geometries for aerodynamic shape optimization. In
support of this, we also matured the discrete geometry engine that underlies the work.
Various applications are presented that demonstrate broad support and uptake for the
discrete geometry tools developed in this work. This report outlines our theoretical ap-
proach to adaptive parameterization, provides detailed, practical implementation notes,
and contains several verification studies and design examples. These studies demonstrate
substantial wall-clock time computational savings, smoother shapes, and superior final
designs compared to a standard static-parameterization approach. They also demonstrate
that the adaptive system can autonomously discover the parameters necessary to solve
an optimization problem. As a whole, this work is an important step towards greater
automation in solving the unfamiliar aerodynamic shape design problems of the future.
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Nomenclature

Z : Scalar
Z: Vector
Z: Continuous
Z: Function

C, C Shape control description
C, C Constraint functional(s)
D Design description (shape plus design conditions)
D Diagonal scaling matrix or approximation of Hessian diagonal
D(X) Shape deformation function
F Design functional (objective or constraint)
g,g Growth rate(s) in number of parameters
I Importance indicator
J Objective functional
N

(·) Number of (·)
O Asymptotic order of computational complexity
P(C) Shape parameterization function
Q Flow solution
r Slope reduction factor for trigger
S Shape
S Discrete (tesselated) surface
w Window width
X,X Design variable value(s)
⇥ Operating conditions
 o, j Adjoint solutions for objective and constraints

Subscripts

(·)c Candidate shape control
(·)G Gradient
(·)H Hessian
(·)⇥ Static

Abbreviations

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm
DV Design variable
KKT Karush-Kuhn-Tucker conditions
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1 Introduction

S

hape optimization is fast becoming an indispensable component of aerodynamic de-
sign. Most current approaches to aerodynamic shape optimization rely heavily on user

training and experience with a range of specialized subtools. To a certain degree this is
essential; design decoupled from understanding and experience is inconceivable. Neverthe-
less, manual setup of these tools typically involves a large number of non-design-related
details which can require deep expertise to master. Unfortunately, these non-design tools
can still significantly impact the validity, robustness and cost of optimization.

Consider the four most universal optimization subtools, in the order they typically
appear in design: (1) the geometry modeler, (2) meshing tools, (3) the flow solver, and (4)
the optimizer. Encouraging strides toward automation have been made with respect to
the last three tools. Regarding the geometry modeler, automated shape deformation tools
are increasingly commonplace. The major missing link, however, is the relative lack of
automatic shape parameterization tools. This constitutes a major obstacle to robustness
and consistency, as the parameterization sets and limits the range of reachable shapes.
Di↵erent designers will craft distinct parameterizations and thus obtain di↵erent optima,
even to otherwise identically-posed problems. Expert-crafted parameterizations strike a
compromise between the speed of the optimization (favoring a compact parameterization)
and the capacity for design improvement (detailed parameterizations and a high dimen-
sional design space). Indeed, this fundamental tradeo↵ between cost and capacity is the
primary motivation for manually constructing shape parameterizations in the first place.
Regardless of the cost balance struck, the final design is certain to be suboptimal – the
design space was limited by the parameterization. This often leads to subsequent, expert-
guided, redesigns wherein additional subsets of parameters are added in an attempt to
further advance the objective function. Furthermore, a designer must be aware of addi-
tional potential pitfalls of manual parameterizations, such as bias towards familiar designs
and repetitive and error-prone setup procedures.

This work demonstrates that, to a large degree, the construction of the shape param-
eterization can be automated. Su�cient information is unearthed during optimization
to make intelligent, automated decisions about the shape parameterization. During op-
timization, this information can be used to automatically refine and evolve the shape
parameterization, both in terms of the number of design variables and their distribution.
The primary goals of this approach are to reduce manual setup time, to alleviate the need
for user-in-the-loop reparameterizations, and to reduce the dependence of the result on
the skill of the designer at choosing the best possible parameterization. An appealing
side-e↵ect is that the system tends to achieve faster and more robust design improvement
compared to “obvious”, but non-expert-crafted parameterizations. Ultimately, the hope is
to approach expert-performance with an automated system, thereby rendering parametric
shape optimization more fruitful to aerodynamic designers who are not necessarily highly
trained in the various codes, frameworks and tools involved.
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1.1 Limitations of Static Parameterizations
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Figure 1: BFGS-style optimization converges in
O(NDV ) search directions. A progressive parameter-
ization can follow the “inside track”, making rapid
gains early, while still approaching the continuous op-
timal shape.

Under a traditional static parameteri-
zation approach, the space of all reach-
able shapes is prescribed before each
optimization begins. This can restrict
the design space in unnecessary ways,
needlessly hindering the discovery of
superior designs outside this envelope.
One recourse is to use a very large
number of design variables. However,
as shown in Figure 1, while finer pa-
rameterizations can reach superior de-
signs, they take longer to converge,
even with BFGS gradient-based op-
timizers, which typically converge in
O (NDV ) design iterations. The de-
signer strives to find an optimal bal-
ance in the number of design vari-
ables. Using too many leads to inef-
ficient navigation, while using too few
restricts adequate exploration of the
design space. In practice, frequently
a designer will typically perform an optimization and then manually refine the param-
eterization and restart the design. This is clearly a time-consuming and labor-intensive
approach.

1.2 Progressive Parameterization

In this work, we adopt a progressive parameterization approach, where optimization begins
in a coarse search space, and then automatically transitions to finer parameterizations at
strategic moments. The basic idea is to first optimize in low-dimensional search spaces
focusing on the manipulation of gross features. We then automatically introduce more
dimensions with finer shape control to drive towards the optimal shape. Importantly, this
approach can be both e�cient and complete, by eliminating the arbitrary tradeo↵ caused
by using a static parameterization. It constitutes a single process that drives the shape
towards the local optimum of the continuous problem, while remaining e�cient early on.

Figure 2 illustrates the basic approach. The designer first specifies an initial low-
dimensional shape parameterization. As the design evolves, higher-resolution shape con-
trol is automatically added, removing the restrictions of optimizing within a static pa-
rameterization. Rapid design improvement is encouraged by using compact search spaces
early on; more degrees of freedom are introduced only when necessary to further improve
the design. In the limit of uniform shape control refinement, the full design space of the
continuous problem gradually becomes available for exploration.

The primary benefit of a variable shape control approach is that the designer is no
longer burdened with predicting, a-priori, how many and which design variables will be
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Figure 2: Search space refinement for wing design. Airfoil control is refined independently on
each section.

appropriate for a particular design problem. It also radically reduces user setup time, as
design variables are automatically created and bounded. Furthermore, it constitutes a
single hierarchical process that progressively drives the shape towards the true continuous
optimal shape, instead of an approximation in an arbitrarilly fixed design space. Although
our primary goal is to streamline and automate design tools, using a variable approach is
also motivated by a growing body of evidence that substantial design acceleration can be
achieved by using a hierarchical parameterization approach.1–4

1.3 Enabling Technologies

1.3.1 Adjoint Sensitivity Information

A key enabling technology for our approach is the incorporation of sensitivity information
provided by the adjoint equations. Since its introduction to the aerodynamic community
25 years ago,5 the adjoint method has revolutionized gradient-based shape optimization,
rendering it computationally feasible to optimize on very large numbers of design variables.
The adjoint approach allows all of the objective gradients to be computed for a fixed cost
of roughly two PDE solutions, instead of the 2N solutions required under a finite di↵erence
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formulation.

This work employs the adjoint in an additional and novel role. Sensitivities in the
adjoint encode much more information than traditional parametric shape optimization
makes use of. This information can be extracted at trivial cost, and, if harnessed, can
accelerate the rate of design improvement. Specifically, we use the adjoint to compute
gradients not only with respect to existing shape design variables, but also with respect
to potential design variables. We can then determine whether these candidate design
variables would drive the design forward more e↵ectively, and if so, inject them into the
active set. Di↵erent design problems may call for di↵erent shape control. Our goal is to
automatically discover the necessary shape control as the design evolves. Thus we expand
the traditional role of the adjoint from e�ciently computing objective gradients to include
adaptive refinement of the search space.

1.3.2 Discrete Geometry Manipulation Tools

Geometry manipulation is central to shape optimization, and even more so when moving
to automatic parameterization. One key objective of this work was to develop and mature
a tool that allows discrete surfaces to be parameterized with design variables automati-
cally placed in any location. This supports both manual and automatic parameterization
approaches. To modify geometries during optimization, and to reparameterize them on
the fly, we leverage discrete geometry tools from the computer graphics (CG) industry and
customize them for aerospace design. The CG industry has invested for decades in general
geometry manipulation techniques. These tools are designed to serve as automated geom-
etry deformation engines and o↵er access to a wealth of flexible deformation techniques
and e�cient surface manipulation routines. They are also highly extensible via back-end
scripting interfaces.

Section §2 discusses our geometry platform in more detail. This platform can incor-
porate the many deformation techniques developed by the aerospace community in recent
years as plugins. We can rapidly prototype new deformation techniques on the standard,
unified geometry manipulation platform it o↵ers. Mature graphical user interfaces (GUIs)
enable designers to interactively parameterize discrete geometries during preparation for
an automated shape optimization study. Section §2.3 presents several applications of this
toolset outside the immediate context of the present work.

1.4 Outline

In Section §2 we discuss the geometry platform that underlies the entire progressive param-
eterization system. In addition to describing the shape parameterization methods used for
this study, we also highlight various spin-o↵ applications that have successfully leveraged
this discrete geometry platform. Thereafter we cover the basic algorithm and approach to
progressive design (Section §3) and discuss the details of our particular implementation
(Section §4). Section §5 gives an approach to adaptive shape parameterization, where we
seek to add only the most important shape control. Finally, evaluation studies and design
examples are given in Sections 6 and 7.
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2 Discrete Geometry Platform

Throughout this work shape changes are made by deforming discrete surface triangula-
tions. Shape manipulation is handled with a standalone modeler for discrete geometry,
implemented as an extension to an open-source computer graphics suite called Blender.
This platform was developed and validated in previous work.6,7 It allows Blender to serve
as a geometry engine for shape optimization, providing on-demand deformations, along
with analytic shape sensitivities. For this work we further extended and improved this
platform in several ways. First, we developed additional custom shape parameterization
plugins, which are described in the following sections. Plugins to support aerostructural
analysis and design were also developed.8,9 Finally, support has been added for adaptive
parameterization.10,11

2.1 Curve Deformer

To deform curves (such as airfoils or cross-sections of wings or fuselages), we use a “di-
rect manipulation” approach, illustrated in Figure 3. The deformation of certain “pilot
points” placed along the curve are explicitly specified. These points serve as the design
variables. Deformation of the remainder of the curve is smoothly interpolated using radial
basis functions (RBF). Derivations of the RBF deformation technique as applied to aero-
dynamic design are given by several authors.12–15 Each parameter has a bump-shaped
deformation mode that is mostly confined to the region between its neighboring points,
while maintaining smoothness. We chose the basis function � = r3 here, primarily because
it requires no local tuning parameters, making it more amenable to automation.

r1 h

b1

b2

r2

γ

θ

ctip

Λ
croot

Down the span

Top-downFront view

Airfoil sections

Figure 3: Parametric wingtip deformation using constraint-based deformation.
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2.2 Wing Deformer

For parametric manipulation of wings, we use the technique illustrated in Figure 2, which
linearly interpolates twist, sweep, chord and airfoil shapes between spanwise stations.
At each station a curve deformer (described in the previous section) deforms the airfoil
shape, after which the twist, sweep, and chord modifications are applied. Interpolation of
twist, sweep, chord and airfoil shape happen independently, and so the shape control may
be refined anisotropically, to give greater resolution of one type of control than another.
Similarly, each airfoil control station can o↵er di↵erent streamwise shape control resolution.
To refine the shape control, more spanwise stations may be added, or new degrees of
freedom may be added to individual curve parameterizations.

2.3 Applications

Flap deflection for Performance Adaptive 
Aeroelastic Wing (PAAW)

Unloaded

Loaded

Adaptive Aeroelastic Shape Control (AASC)

4b

4a

Figure 4: Use of the discrete geometry deforma-
tion platform developed in this work for support
of ARMD initiative on airframe e�ciency

Before turning the main thrust of this
work, namely the development of auto-
matic parameterization tools, we find it en-
couraging to note that the discrete geom-
etry tools developed as part of this work
have already proved useful in various real-
world design settings. In fact, an impor-
tant goal of the present work was to enable
automated shape optimization while simul-
taneously improving the geometry tools
available in existing user-driven design en-
vironments. Two examples of the latter are
briefly presented here.

This work integrates directly into
NASA’s Cart3D Design Framework via an
XML-based protocol, which enables it to
plug in to any other design system that subscribes to this protocol. This integration
has fed into several projects related to aeroelastic analysis8 and design.9 Further, it sup-
ported a twist optimization study regarding the design of a highly flexible wind tunnel
model tested at the University of Washington’s Aerospace Laboratory in 2013 and 2014.
Figure 4 illustrates two design initiatives supported by our geometry platform as part of
ARMD’s initiative on airframe e�ciency. The lower frame in this figure highlights work
done for analysis of a Performance Adaptive Aeroelastic Wing (PAAW) in which a Variable
Camber Continuous Trailing Edge Flap (VCCTEF) was used to actively modulate the lift
distribution of the wing throughout the mission profile. This was a complex optimization
task involving not only aerostatic deformation of the flexible wing but also articulation
and deflection of the 43-segment VCCTEF. Reference [9] presents further detail of this
work.

Figure 5 illustrates an application of the geometry platform performed in support of
ARMD’s Commercial Supersonic Transport project to assess aeroelastic e↵ects on sonic
boom signatures. This work was task T3.32 (milestone #33213) under the High Fidelity
Analysis & Validation (HiFAV) project element. The constraint-based deformation pack-
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Figure 5: Support for ARMD initiative on sonic-boom control for development of a Commercial
Supersonic Transport, (HiFAV project, Task T3.3.2, milestone #33213).

age developed as part of the geometry platform of the preceding section was used to apply
measured tunnel deflections to CFD-ready CAD models used for simulations. After ap-
plying the deformation, the model was re-analyzed yielding quantitative prediction of the
e↵ects of aeroelastic deformation on the boom footprint.

Figure 6 shows a final example done as part of the Advanced Air Transport Technol-
ogy Project’s work on element AATT.02.01. This work further quantified opportunities
a↵orded by the VCCTEF on elastically shaped aircraft. In this e↵ort, the geometry plat-
form outlined in the preceding section was used to install and articulate the multi-segment
flap on an aircraft with a truss-braced wing. This optimization exercise orchestrated flap
deflection to minimize the combination of both wave drag and induced drag at cruise con-
ditions and use of the VCCTEF to for load alleviation. The work involved autonomously
calling the discrete geometry engine from within the design cycle to control and coordinate
flap deflection. This milestone was reported to the AATT program in March 2015 by the
authors of [9].
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Figure 6: Application of the discrete geometry platform to support NASA Advanced Air Trans-
portation Technologies Project program element AATT.02.01. This work examined design and
optimization of VCCTE flap system on a truss-braced-wing aircraft to achieve minimum cruise
drag & active load alleviation.

3 Optimization with Variable Shape Control

The aerodynamic shape optimization problem we consider consists of finding a design D
that minimizes a single objective J , subject to design constraints Cj :

min
D

J (D) (1)

s.t. a  Cj(D)  b

where J and Cj are scalar functionals that involve specific performance metrics such as lift,
drag, range, stability margins, maneuver loads, or wing volume, possibly integrated over
multiple flight conditions. They may also relate to higher level metrics like operating range
or cost, or to more specialized concerns such as reducing sonic boom ground signatures or
reducing environmental impact. The design D = (S,⇥) consists of a shape S and a set of
operating conditions ⇥ that are independent of the shape, such as angle of attack, Mach
number, altitude, or throttle settings.

In this work, all design functionals considered depend only on the external surface.
This includes aerodynamic functionals such as lift or drag, which depend only on the
wetted surface or “outer mold line”, and also geometric functionals, such as wing volume
or thickness, that can be measured with only an external surface description. For our
purposes, the term “shape” will denote the external surface, while internal layout details
or material properties will be ignored. The approach developed here is, however, applicable
to other disciplines. In aerostructural design, for example, the “shape” description would
include both the external surface and internal geometry, such as spars and ribs.

Whether directly or indirectly, the values of all functionals are ultimately determined
by the shape. In the case of aerodynamic functionals, J and Cj are evaluated after solv-
ing for the flow variables Q.a For gradient-based optimization, the derivative of each
output functional must be computed with respect to the design. In the case of aerody-
namic functionals, the functional gradients are most e�ciently computed using an adjoint
approach.

aQ can just as easily represent other PDE solutions, such as structural deformation.

10



3.1 Shape Parameterization

While the operating conditions ⇥ typically comprise a small discrete set of design vari-
ables, the shape S is continuous, and so the full design space is infinitely dimensional. To
reduce the search space to a manageable dimension, the surface modifications are usu-
ally parameterized. A shape parameterization technique, P, is a map from a vector C
describing the shape control to a deformation functionb, D, of a set of shape parameters
X:

(Parameterize) P : C �! D(X) (2)

This deformation function defines the search space for optimization. It determines the span
of reachable designs, which is (intentionally) only a subset of the full shape design space
supported by the continuous surface. The shape parameters X, or a subset thereof, serve
as the design variables for optimization. During optimization, the deformation function
takes the design variable values and generates a new surface:

(Modify Shape) D : X �! S (3)

The local linearization of D provides the shape derivatives @S
@X , which describe the de-

formation modes of each parameter. These shape derivatives are used in gradient-based
optimization, allowing projection of the functional gradients with respect to the surface,
@F
@S , into the compact search space spanned by the shape parameters.

In short, Equation (2) describes how the shape control induces a set of shape pa-
rameters, while Equation (3) describes how those shape parameters deform the surface.
In standard optimization approaches, only Equation (3) is automated. One of the core
di↵erences of the present work is that Equation (2) is also automated.

The distinction drawn here between the shape control C and the shape parameters
X is important. Each optimization level involves a search in the space spanned by X,
while holding C fixed. When transitioning to the next search space, the shape control
C is modified, while the shape is held fixed. For many modelers, there is not always a
one-to-one correspondence between the shape control and the shape parameters, a point
that is important in the following section.

3.2 Progressive Shape Control

In standard shape optimization approaches, the shape control C⇥ is static and pre-
determined by the designer. This induces a static search space D⇥(X⇥), which may
be more or less e↵ective at improving the objective function, due to the unavoidable
tradeo↵ between completeness and e�ciency. A progressive approach uses instead a se-
quence of shape control resolutions C0,C1,C2 . . . , which generate a sequence of search
spaces D

0

(X
0

), D
1

(X
1

), D
2

(X
2

) . . . that permit ever more detailed shape control. The
designer provides only the initial shape control C0. After an optimization in this de-
sign space, the shape control is automatically refined, and optimization continues in the

bIn this work we use shape deformation techniques, where modifications of an existing surface are
parameterized. However, the following discussion is fully applicable to constructive parameterized surface
generation as well.
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higher-dimensional search space.c

The purpose of this approach is to automate the generation of nested search spaces
of increasing resolution. However, the designer is still responsible for establishing a basic
framework for this process. Specifically, the designer selects a class of shape control (e.g.
twist vs. airfoil deformation), specifies an initial coarse parameterization, and indicates
how the shape control may be refined. Automatic refinement is performed within this
user-defined framework.

For example, Figure 7 illustrates nested search space refinement as applied to airfoil
design. Instead of providing a static set of design variables, the designer establishes a
general shape control framework. This may involve establishing important design features
as parameters or constraints, such as the leading and trailing edges or spar locations (black
and orange dots in Figure 7). These features partition the curve into several regions.
Initially, a single shape controller is placed in each region (blue dots). Thereafter, the
shape control is automatically refined when and where necessary.

3.3 Binary Refinement

Auto: Partition
Feature/Constraint

Parameter

Auto: Parameterize
Binary 

Refinement

User: Mark Features and Constraints

Auto: Uniform Refinement

A B C

D E F

Auto: Adaptive Refinement

Figure 7: Progressive parameterization with discrete,
hierarchical shape control refinement

In this work, we adopt a nested, hier-
archical search space refinement tech-
nique, with a discrete approach to
adding design variables, akin to h-
refinement in mesh adaptation. (In
other words, optimal continuous posi-
tioning of the shape controllers is not
considered.) The shape control can
thus be encoded as a binary tree, as
depicted in Figure 7, with deeper lev-
els corresponding to higher resolution
shape control. Starting from a single
“root” controller, finer shape control
is gradually introduced through binary
refinement of each “leaf”. In the limit
of refinement, this sequence converges
to continuous shape control that cov-
ers the shape being designed.

Note that Figure 7 depicts design of a simple curve; the shape control can thus be
represented with a single tree. For design of a 3D surface, the shape control tree has at
least two dimensions. Each dimension can be refined independently, leading to anisotropic
control. Additionally, di↵erent deformation modes may each have their own independent
trees.

cAlthough we do not consider it in this work, removing design parameters that are no longer useful is
also a possibility.
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3.4 Uniform vs. Adaptive Refinement

One simple and robust approach to refinement is to simply uniformly refine the parame-
terization by binary subdivision of each leaf on the tree. However, this raises the issue of
the rate of growth in the number of design variables, which has a critical impact on e�-
ciency. Excessively high growth rates introduce large numbers of design variables, leading
to search spaces that are slow to navigate. As will be shown, even uniform refinement
greatly accelerates design improvement compared to static parameterizations. However,
uniform distribution of shape control is generally suboptimal, implying that even more
gains in e�ciency are possible.

This immediately raises the possibility of “adaptive” refinement, where we selectively
refine only certain regions, as shown at the bottom of Figure 7. The goal of adaptive
refinement is to add only the most important shape control to solve the given problem,
maximizing design improvement for a fixed number of design variables. This often reduces
the total number of design variables required to find the optimum.

3.5 Optimization Loop

!12

Modify shape 
parameters

Analyze

Refine shape 
control

Figure 8: Optimization loop with pe-
riodic search space refinement

The design loop now consists of a nested sequence:
optimize within the current search space, and then
refine the shape control. This process is illustrated
in Figure 8, where the inner loop represents a stan-
dard parametric shape optimization framework that
optimizes a shape in a static search space. This
inner-outer loop is detailed more explicitly in Al-
gorithm A. The function Optimize(·) represents a
standard parametric shape optimization framework.
Parameterize(·) is the modeler-dependent imple-
mentation of Equation (2), which generates a search
space (i.e. a deformation function and design vari-
ables) from the shape control description. Unlike
in static optimization approaches, where this is a manual pre-processing step, here it is
automated.

The refinement strategy is governed by three new functions, each of which will be
discussed in more detail in the following chapters. First, the Trigger(·) monitors the
optimization to determine when to refine the shape control. Next, the modeler-dependent
GetCandidateShapeControl(·) generates a list of possible locations where the shape con-
trol may be refined. Finally, some or all of these candidates are marked for refinement.
The simplest approach is to add all the candidates to the active set, which will be called
“uniform” refinement. Alternatively, the system can try to predict which subset of the
candidates would best enrich the search space. This adaptive process is represented by
AdaptShapeControl(·), a search procedure that chooses an e↵ective subset of the candi-
dates. Finally, Parameterize(·) generates the refined search space. It also manages the
transfer of design variable bounds and scale factors from the previous design space, and
if possible, ensures that the new shape is identical to the final previous shape.

The ultimate convergence criterion of Algorithm A is based on objective convergence as
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the discrete shape control C approaches continuous shape control (direct optimization of
S) such as used in one-shot optimization methods. In practical settings, the optimization
may be terminated well before this degree of convergence is attained.

4 Implementation

The nested optimization procedure of Algorithm A integrates three basic software com-
ponents: (1) a geometry modeler, (2) a shape optimization framework, and (3) scripts to
guide search space refinement. In this chapter, we discuss the approach to each component
in the context of developing a system to orchestrate them. The shape optimization frame-
work and geometry modeler are treated as independent servers and are invoked during
the outer loop over the sequence of search spaces.

The first section discusses general requirements that a geometry modeler must satisfy
to enable automatic generation of search spaces for shape design. (Recall that Section
§2 discussed the specific discrete geometry modeler used for this work.) In Section §4.2,
we discuss the use of an existing static-parameterization shape optimization framework to
solve each level of the variable shape control optimization problem. Finally, Section §4.3
introduces a refinement strategy that addresses the question of when to refine the shape
control to maximize e�ciency.

4.1 Geometry Modelers — Universal Requirements

Consider a standard gradient-based design framework where the geometry modeler, whether
constructive or deformational, generates a discrete CFD-ready surface triangulation upon

Algorithm A: Optimization with Adaptive Shape Control

Input: Initial surface S
0

and shape control C0, objective J , constraints
Cj , shape control growth rate g

Result: Optimized surface S

C � C0,S � S
0

repeat
D,X

0

 � Parameterize(S,C)
S � Optimize(D,X

0

, J , Cj) until Trigger(·)
Cc  � GetCandidateShapeControl(C)
if adaptive then

C � AdaptShapeControl(C,Cc, ,S,g[i])
else

C � C [Cc // Uniform refinement

end

until convergence of J and Cj w.r.t. C

Function color key:

Parametric geometry modeler

Refinement strategy (modeler independent)
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demand from the design framework, annotated with shape derivatives for each design
variable. In this context, the geometry modeler must:

• Before optimization: Provide a list of available design variables with lower and
upper bounds.

• During optimization: Given any set of feasible parameter values X:

– Generate the corresponding surface (Equation (3)).

– Provide shape derivatives @S
@Xi

for each design variable.d

A geometry modeler integrated with a shape optimization framework already satisfies these
requirements.e However, moving to progressive parameterization places greater emphasis
on automated, API-based access. Certain traditionally manual tasks must be automated
in a consistent and robust manner. These tasks include setting design variable minimum
and maximum bounds and scale factors, and modifying control parameters and settings
in geometry modeler input files. Additionally, a small amount of modification to the
geometry modeler may be required to allow the optimization system to automatically
invoke refinements of the shape control. For modelers where the parameterization is
specified in simple input control files, this is simply a matter of creating a script-based
interface to the progressive parameterization system. For modelers that mandate GUI-
based access to change settings or to re-parameterize a shape, it may involve modification
of the geometry modeler itself.

4.1.1 Automatic Generation and Refinement of Search Spaces

In the context of progressive parameterization, the geometry modeler must implement
additional script-based methods that

• Before refinement: Provide a list of possible shape control refinements
— GetCandidateShapeControl(·) in Algorithm A.

• During refinement: Generate a deformation function D from any set of shape
control refinement locations — Parameterize(·) in Algorithm A (Equation (2)).

• After refinement: Transfer bounds, scale factors and other meta-data from the
old search space to the new ones.

The details of these methods depend on the geometry modeler. More concrete examples
will be given in Section §2, where we discuss implementation of these functions for a
specific geometry modeler. However, there are several universally relevant topics that
warrant discussion.

dThis is not technically a strict requirement; shape derivatives can be computed automatically by finite
di↵erencing.

eBesides these strict requirements, several authors have discussed various desirable qualities, including
smoothness, compactness, e↵ectiveness and intuitiveness.16–20

15



4.1.2 Exact Surface Reconstruction

It is desirable that the shape be preserved exactly when refining the parameterization.
Olhofer et al. refer to this as a “neutral mutation” of the shape control.3 In terms of the
notation used in this work:

Sk
final = P(Ck)(Xk

final) = P(Ck+1)(Xk+1

0

) = Sk+1

0

(4)

where k and k + 1 are the current and subsequent search spaces. This characteristic is
desirable from a computational standpoint. If it is not true, then a re-fitting procedure
when re-parameterizing. This refitting is usually approximate, introducing a “jump” in
the shape and therefore a setback in the design process. This has particularly been a
disadvantage of certain previous attempts at progressive parameterization with construc-
tive modelers.1,4 In a few notable constructive modeling approaches, however, an exact
refitting procedure has been used.2,21 With discrete geometry,the shape is inherently
preserved exactly.

4.1.3 Discrete Binary Shape Control Refinement

Note that at this point, we have deliberately not placed any severe restrictions on the
manner of shape control refinement. However, there are certain desirable characteristics
of the structure of the parameterization scheme:

• Hierarchical (“nested”) organization of parameters

• Refinement that can be localized to particular regions of the shape

• Unlimited, or at least substantial, refinement depth

• Exact shape preservation when transferring between levels

In this work, each parameterization is viewed as a binary tree, restricting refinement to
the midpoints between existing shape controllersf, although one can search several levels
deep from the current parameterization. To maintain smoothness in the spacing between
parameters, we prohibit large discrepancies between the refinement depth of adjacent re-
gions on the surface. This regularization proved to be important for robustness in many
cases. Many parameterization techniques support infinitely-scalable shape control resolu-
tion, but we usually impose a minimum spacing between adjacent parameters (equivalent
to a maximum depth in the binary tree). This prevents the shape control from becom-
ing unreasonably closely spaced and keeps the shape control resolution well outside the
resolution of the surface and flow mesh discretizations.

4.1.4 Transfer of Meta-data to New Parameters

Additional questions arise when determining how to propagate optimization data, includ-
ing minimum and maximum bounds and scale factors. Our basic approach is to linearly
interpolate these parameters between existing controllers.

fRefinement can also be directionally biased, for example to cluster parameters towards the leading
edge of a wing.
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4.2 Static Shape Optimization Framework

For the function Optimize(·) in Algorithm A, we use a gradient-based aerodynamic shape
design framework22 that uses an embedded-boundary Cartesian mesh method for inviscid
flow solutions. Aerodynamic objective and constraint gradients are computed using an
adjoint formulation. These same adjoint solutions are later reused to prioritize candidate
design variables when refining the search space. Optimization can be handled with any
black-box gradient-based optimizer; for this study, the SQP optimizer SNOPT23 is used,
enabling proper treatment of linear and nonlinear constraints. Geometric functionals
(e.g. thickness and volume) are computed by a standalone tool that provides analytic
derivatives to the functionals. The design framework communicates with all geometry
tools via XDDM, an XML-based protocol for design markup.22

4.3 Trigger for Transitioning Between Search Spaces

To determine when to transition to a finer search space, we use the Trigger(·) function
in Algorithm A, which is a stopping criterion that terminates the optimization in the
current search space and initiates a parameter refinement. A timely and robust trigger
is critical for e�ciency, as demonstrated in Figure 9. The two branches show the perfor-
mance impact of triggering at di↵erent times, for an airfoil drag minimization problem.
Over-optimizing on the initial parameterization leads to long periods of negligible design
improvement, while refining the search space earlier results in much faster improvement
per cost. Similar observations have also been made by other authors in the context of both
adaptive parameterization1 and optimization with progressively refined PDE meshes.24

The approach used in this work is to only partially converge the optimization in each
search space, with the goal being to move to the next parameterization at a computa-
tionally e�cient moment. We ruled out simplistic triggers, such as using a number of
search directions that is either fixed (as in1) or proportional to the number of design vari-
ables. This would demand prior knowledge of the rate of convergence for a problem, which
defeats the purpose of having a general and automated system.

4.3.1 Optimality Trigger

One obvious and robust approach is to allow the optimization to converge until an opti-
mality criterion based on the KKT conditions is su�ciently satisfied. Han and Zingg2 used
this approach to achieve maximal design improvement within each search space. However,
we found that on many problems, this type of trigger often excessively delays refinement
in early search spaces, as demonstrated in Figure 9. This might be remedied by choosing
a looser optimality tolerance. However, the magnitudes of the gradients can vary widely,
depending on the scaling of the problem. Establishing an e�cient cuto↵ is di�cult with-
out prior experience with a particular problem, and this is unattractive in an automated
setting.

4.3.2 Slope Trigger

A simple alternative approach is to trigger when the rate of design improvement starts
to substantially diminish. From an engineering perspective, this is a pertinent choice, as
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design improvement vs. cost is typically the most important figure of merit. To detect
diminishing design improvement, the system monitors the slope of the objective (or merit
function) convergence with respect to a suitable measure of computational cost. The
optimization is terminated when this slope falls below some fraction r of the maximum
slope that has occurred so far. This strategy proved to be less sensitive to the cuto↵
parameter r than the optimality criterion. The normalization by the maximum slope
accounts for the widely di↵ering scales that occur in di↵erent objective functions. For
example, a drag functional is normally O �10�2

�
while a functional based on mission

range may be O �105

�
.

The slope is evaluated at major search iterations, which is monotonically decreasing.g

The objective slopes can be non-smooth, which can cause false triggering. This can be
partially avoided by using running averages over a small window, which e↵ectively smooths
the objective history. This helps prevent premature triggering, but it causes a lag equal

gFor attainable inverse design problems, the slope is measured in log-space to better reflect the problem.
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Figure 9: Orange: Optimizing to convergence on each level leads to slow design improvement.
Blue: Using aggressive slope-based transitions permits much faster design improvement. ⇥-marks
denote parameterization refinements.
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to the size of the window, which delays the trigger for a few search directions. Therefore
the window should be as small as possible. For relatively simple design problems, a fairly
aggressive trigger can be used (as high as r = 0.25, with window w = 1). For more
complex problems, especially ones with initially-violated constraints, we observe that it
can be more e↵ective to allow deeper convergence on the coarser parameterizations before
proceeding.

The slope-trigger tacitly assumes that diminishing design improvement indicates a
nearly fully-exploited search space. This assumption is not always valid: the optimizer
could be simply navigating a highly nonlinear or poorly-scaled region of the design space,
after which faster design improvement would continue. Thus an aggressive trigger may
introduce shape parameters earlier than strictly necessary. However, under an adjoint for-
mulation, the cost of computing additional objective and constraint gradients is usually
negligible compared to the cost of over-converging in a coarse search space.h For practical
design environments we also optionally allow the designer to manually signal the frame-
work to trigger (or delay triggering) a parameter refinement. If a signal is not sent, the
automatic trigger is used.

5 Discovering the Most E↵ective Shape Control

At this point, we have described a system that optimizes a shape, using automatically-
generated, uniformly-refined, nested search spaces. Uniform refinement is simple, robust,
and consistent with the continuous optimal solution. However, uniform shape control dis-
tribution may be suboptimal for a given number of shape parameters, which can adversely
impact e�ciency. Minimizing the number of design variables is highly desirable.i

In this section, we investigate the possibility of selective refinement or adaptation. We
discuss a systematic method for choosing an e↵ective combination of refinement locations
from among the myriad possibilities. In this approach, a set of candidate shape control
refinements is first generated by the modeler, as described in Section §4.1. Next, the
system predicts the e↵ectiveness of each candidate by computing an “importance indica-
tor”. Finally, the system selects the shape control refinement with the highest predicted
performance.

In the first section, we develop a class of importance indicators, based on “problem-
aware” metrics, namely the objective and constraint gradients and Hessian information.
In Section §5.2, we discuss a search algorithm for finding an e↵ective combination of
parameters. Adaptive parameterization allows setting a growth rate, which has important
impacts on e�ciency. We evaluate these e↵ects in Section §5.3 and propose a possible
method for automatically determining an e�cient growth rate. This chapter concludes
with a brief section on a few additional requirements on the geometry modeler, beyond
what is required for non-adaptive (uniform) refinement.

hHowever, under a finite-di↵erence optimization framework (i.e. without the adjoint), where the cost
of each extra gradient is two flow solutions (N + 1 in all), it could prove more e�cient to allow deeper
convergence on fewer design variables.

iThis is true even under an adjoint formulation. Although the cost of gradient computations is much
less sensitive to NDV than under a finite di↵erence approach, non-negligible O(NDV ) costs remain, namely
the computation of geometric surface derivatives and subsequent gradient projections.
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5.1 Indicators of Design Improvement Potential

!11

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E�ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:

IG(Xc) =

����
@J
@Xc

���� (4)

Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables �J
�Xc

, and a Hessian approximation �2J
�X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator

IH(Xc) ⌘ ��Jexp(Xc) =
1

2

@J
@Xc

T @2J
@X2

c

@J
@Xc

(5)

which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

f

Stemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow

equations themselves.
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gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
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space.
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the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
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While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
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We can compute these gradients for modest additional cost, because the adjoint solution has already
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gradient-projection function that the design framework applies to existing design variables.
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only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
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J (Xprev)

Figure 10: Local first- and second-order fits
(dotted lines) of a candidate search space’s ac-
tual behavior (blue). With second-derivative
information, the expected improvement �Jexp

can be estimated. A second candidate search
space with higher gradients (red) may actually
o↵er less potential design improvement if its
second derivatives are also high.

The expected achievable design improvement
�Jexp with a given set of shape control can
be estimated using the local objective and
constraint gradients with respect to the can-
didate shape control and a Hessian approx-
imation. As we will show in a later section,
the gradients with respect to candidate de-
sign variables can be computed with minimal
computational overhead, while the Hessian is
less straightforward.

Consider Figure 10, which illustrates a
local quadratic fit of an objective function
in the candidate search space, based on the
current objective value J (X

0

) (presumably
the optimum achieved in the previous design
space), objective gradients @J

@Xc
, and Hessian

@2J
@X2

c
. Each gradient gives a local forecast

of the rate at which that individual candi-
date parameter will help improve the design,
while the second derivatives indicate how fast
that rate of return will decrease.

The minimizer of this fit has an analytically known location and value. Conceptually,
this minimal value is an estimate of how much design improvement is possible under that
parameterization, which serves as an intuitive importance indicator.

5.1.1 Unconstrained Case

Considering first the unconstrained case, the indicator is

IH(Cc) ⌘ ��Jexp(Cc) =
1

2

@J
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T ✓@2J
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c

◆�1

@J
@Xc

(5)

which prioritizes search spaces with the highest capacity for design improvement. In the
next secton, we will show that IH performs exceptionally well, even on a highly misscaled
problem. Unfortunately, for aerodynamic problems, no estimate of the Hessian for the
candidate design space is readily available, without the prohibitive cost of 2NDV finite-
di↵erenced flow and adjoint solutions. In a well-scaled problem, we might approximate
the Hessian as the identity matrix, yielding an indicator that is more readily computable,
as it involves only gradient information:
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(6)

For many aerodynamic problems, however, the relative design variable scales are orders
of magnitude di↵erent from each other. As we will show in Section §6.3, this can render
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IG a grossly ine↵ective predictor of performance. One middle ground is to approximate
the Hessian using a simple diagonal scaling matrix D:

ID(Cc) =
1

2

@J
@Xc

T

D�1

@J
@Xc

(7)

Ideally, D is the diagonal of the Hessian, which roughly encodes the relative scaling of each
parameter. (The o↵-diagonal terms account for redundant potential among the parame-
ters.) Although the diagonal values could theoretically be specified as scale factors by the
user, as commonly done in optimization to improve the conditioning, manual intervention
is not an option in an automated setting. A more subtle problem is that, unlike in quasi-
Newton optimization – which self-corrects the Hessian over several iterations, here we are
trying to pick good parameters without actually taking an optimization step. An inaccu-
rate choice of scale factors will therefore have a more serious impact on the quality of the
results. In a subsequently section, we will discuss some approaches to approximating the
Hessian, or at least its diagonal. Nevertheless, this remains an open area of research. For
most problems, we must currently limit ourselves to using only first-order information.

5.1.2 Constrained Case

If there are design constraints or design variable bounds, it is desirable to prioritize param-
eterizations that have the largest expected feasible objective reduction. A candidate shape
parameter is not useful if it must violate a constraint to improve the objective. In the
specialized case of localized constraints (for example, wing thickness), a rough approach
is to simply exclude any candidate shape control stations that are located near the active
constraints.2 However, this does not extend to important non-localized constraints, such
as lift, pitching moment or wing volume.

To handle general linear and nonlinear constraints, including design variable bounds,
we propose an approach based on the Karush-Kuhn-Tucker (KKT) optimality conditions.
Satisfaction of the KKT conditions indicates that no further progress is possible within
the current search space. Inverting this logic, we propose to add new parameters that
make the KKT conditions in the new search space as un-satisfied as possible.

As before, we assume a local quadratic fit to the objective function, but now subject to
the currently active (or violated) constraints Ca, which are treated as equality constraints
and linearized about the current design:

@CT
a

@Xc
Xc = b (8)

The basic idea is to ignore the currently inactive constraints, and to assume that the active
(and violated) constraints will be satisfied at the optimum in the candidate design space.
Equation (8) makes the assumption that the active constraint set at the current design is
the same as the active set at the predicted minimizer. This may not be true, but cannot
be avoided, as we are making a prediction without actually optimizing.j The constrained
minimizer of the quadratic fit is the solution to the following system of equations

jDetermining the active set of constraints is a very challenging problem even during optimization.
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where the leftmost term is sometimes called a KKT matrix. Solution of this system can
be split into two steps. First, solve for the Lagrange multipliers �:
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The minimizer X⇤
c does not need to be explicitly computed. Instead, substituting its

functional form into the quadratic fit yields the expected feasible design improvement
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Roughly speaking, IKKT prioritizes parameterizations where the objective gradients are
as orthogonal as possible to a linear combination of the active constraint gradients. Cur-
vature information from the Hessian (middle term) corrects the prediction. Term A in
Equation (11) is related to the KKT optimality metric. At the optimal design in the
previous search space, A = 0 (or A ⇡ 0 if only partially converged), but after adding
new parameters it will become nonzero, indicating that there is room for further feasible
reduction in the objective.

In the absence of active constraints, Equation (11) is equivalent to Equation (5). In-
deed, in most experiments, the two indicators appear to yield very similar rankings, but
in some cases, Equation (11) may avoid adding ine↵ectual parameters. As before, if the
Hessian is taken to be the identity matrix, the indicator simplifies to a first-order prediction
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which in turn is equivalent to Equation (6) when there are no active constraints.

5.1.3 E�cient Computation of Gradients for Indicators

The objective and constraint gradients have modest additional cost. During optimization,
the adjoint solutions  j are used to e�ciently compute gradients with respect to arbitrary
shape design variables. After a search space refinement is triggered, we reuse the adjoint
solutions from the final design in the previous search space to rapidly compute gradients
with respect to the new candidate design variables. This is another case where neutral
mutation (Eq. (4)) of the shape control is important. Reuse of the adjoints is possible only
if the geometry modeler preserves the shape exactly when refining the parameterization,
so that the final shape in the previous search space is identical to the initial shape for the
next search space. This is inherently true for all discrete geometry modelers, because they
operate by deforming a static baseline shape, but is not generally true for constructive
(CAD-like) modelers. As an example, Function 2 shows how IG is assembled. The other
indicators would be computed by a similar process.
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Function 2: GradientIndicator(·)
Input: Surface S, shape control C, objective adjoint

solution  
Result: Indicator IG

D,X � Parameterize(S,C)
foreach Xc in Xc do

@S
@Xc
 � ShapeDerivative(D, Xc)

@J
@Xc
 � ProjectGradient( , @S

@Xc
)

end

IG  �
X

i

✓
@J
@Xi

c

◆
2

5.2 Searching for the Best Combination of Candidates

We now present a search procedure for finding an e↵ective parameterization. Recall from
Equation (5) that the expected design improvement is a function of the whole ensemble
of candidate shape control Cc, not simply of each individual controller Cc. This is a
critical point, and has important consequences for e�ciency. In general, the expected
design improvement is a nonlinear function of the candidates. In other words, to compute
the e↵ectiveness of a collection of candidates, one cannot simply sum the incremental
benefits due to each candidate parameter. The reason for this is that multiple similar
shape control candidates usually have “redundant potential”; adding one of them may be
useful, but adding a second may not help much if it enacts similar shape modifications.
Put another way, the potential design improvement o↵ered by two candidates may be
mutually exclusive.

!6
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Candidate Parameter

Indicator

A

E

B C
D

F

A

2. Update 
window 

and resort

Add best
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Figure 11: Constructive search algorithm for refining the shape parameterization
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Function 3: AdaptShapeControl(·)
Input: Surface S, current shape control C, candidate shape

control Cc, adjoint solutions  i, growth rate g, window w
Result: Updated shape control C

// Phase 1. Build priority queue

queue � ;
foreach Cc in Cc do

I  � ComputeIndicator(S,C [ Cc, i)
queue.Add(Cc, priority = I)

end

// Phase 2. Add shape control

Nadd  � int(len(C) · g)
for i=1..Nadd do

foreach Cc in queue.Best(w) do
I  � ComputeIndicator(S,C [ Cc, i)
queue.Update(Cc, priority = I)

end
Cbest  � queue.pop()
C � C [ Cbest

end

Finding the best ensemble of parameters is a form of combinatorial optimization. An
exhaustive search is prohibitive: choosing the best subset of A out of B candidates would
require A!

B!(A�B)!

indicator evaluations. One simple “search” procedure is to randomly
sample combinations of parameters. However, this is highly unlikely to find a good combi-
nation of parameters without very large numbers of samples. Although we did not explore
the possibility, “metaheuristic” search procedures such as genetic optimization, could also
be used. However, these typically require large numbers of functional evaluations.

For this work we developed a “constructive” search procedure, illustrated in Figure 11.
In the first phase, each possible introduction of a single new parameter is analyzed. A
priority queue is then formed by ranking the candidates by their indicator value, as com-
puted by any of the methods from Section §5.1. In the second phase, the system makes
Nadd passes over the priority queue, reanalyzing only a sliding window, w, of the top
few candidates remaining in the queue, resorting the queue, and adding the top-ranked
parameter. The choice of the window size w is a tradeo↵ between the cost of evaluating
more combinations and the potential benefit of finding a more e↵ective search space. This
procedure is given more explicitly in Function 3. Its important features are:

• By reanalyzing the top w candidates, redundant parameters are avoided.

• The cost for the entire search is bounded and O(Nc).k

kAt most w · Nc(1 + w
2

) indicator evaluations are required: Nc to build the initial priority queue and
w ·min(Nadd, Nc�Nadd)  w · Nc

2

to add the rest, because if we are adding more than half of the candidates,
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This procedure is most e↵ective when the initial priority queue remains a fairly accurate
ranking throughout the search. We observe that for many problems this is a reasonable
assumption, and the procedure often returns the same result as an exhaustive search, but
at a fraction of the cost. If the initial priority queue is considered perfectly trustworthy,
one can use a window size of w = 0, which is equivalent to immediately accepting the
top Nadd members of the queue. However, in cases with high “redundancy” among the
candidate shape parameters, this procedure can yield far less optimal results. We give a
detailed example of these di↵erent situations in Section §6.3.

The wall-clock time of the search procedure depends on the number of candidates being
considered, the window size, and on the speed of the geometry modeler and gradient
projection tools, which are invoked frequently. Typically the running times are highly
practical, with cost usually equivalent to no more than a few design iterations. Naturally,
there is a tradeo↵ between spending longer searching for a more e�cient parameterization
and immediately making design progress, but in a less optimal search space.

5.2.1 Simplification for Linear Deformers

For certain particular types of deformers (notably, Hicks-Henne bump functions25 and
Bernstein polynomials or Kulfan parameters18) each deformation mode, described by @S

@X ,
is a function of only one element of the shape control C. In these special cases, the
objective and constraint gradients can be precomputed, which greatly reduces the expense
of ranking the parameters.

Unfortunately, such deformers are the exception rather than the rule. In general,
the deformation mode shape of a parameter also depends on where its neighbors are
located. To visualize why this is usually the case, consider interpolating deformation
between consecutive control stations. By moving one station relative to its neighbor, both
of their shape deformation modes are changed; the width of one shrinks, while the other
expands. The presence of any form of interpolation renders this simplification invalid,
ruling out almost all modelers, including spline-based approaches, CAD systems, and
custom deformers like the ones used in this work.

5.3 Growth Rate

Uniform refinement involves only one tunable parameter, namely the trigger, discussed in
Section §4.3. Adaptive refinement introduces one additional strategy tuning parameter:
the growth rate in the number of parameters (g in Algorithm A). Setting the growth rate
is critical for performance and involves striking a balance between flexibility and e�ciency.
An inflexible search space with too few design variables will quickly stagnate, requiring
frequent shape control adaptation. Conversely, with too many design variables, navigation
is slow. In this implementation, the designer specifies relative growth rates (e.g. 1.5⇥). In
this work We do not yet consider the promising possibility of removing design variables
from the active set.

The optimal rate of design variable introduction depends on the problem. Figure 12
compares the performance of various growth factors on a geometric shape-matching prob-
lem. On this relatively simple problem, a growth rate of 2⇥ converges twice as fast as a

we can work backwards from uniform refinement, removing the least useful parameters one at a time.
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growth rate of 1.25⇥. Here, the purely geometric objective functional allows rapid and
reliable design improvement regardless of the number of design variables, thus favoring
fast growth rates. In more complex problems, however, slower growth rates are often
faster overall. For example, in a sonic boom pressure signature-matching verification
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Figure 12: E↵ect of parameter growth
rate on a geometric shape-matching objective.
Each curve shows mean behavior of 10 ran-
domized trials (trigger = 0.25).

example, we found that an intermediate
growth rate of 1.5⇥ solidly outperforms both
a slower growth rate and uniform (2⇥) refine-
ment.

An additional consideration is how many
shape parameters to start with. As the
transonic airfoil example in Section §7.1 will
demonstrate, starting with a truly “minimal”
search space (with, say, one or two design vari-
ables) leads to rather stunted growth early on.
We have observed that it is consistently more
e�cient to start with at least 6-10 variables,
naturally with the precise number depending
on the problem.

6 Verification and Evaluation

This section evaluates the potential computational acceleration of progressive shape con-
trol and validates the adaptive approach. Three academic optimization examples are
considered. The first example is a symmetric transonic airfoil design problem. On this
problem we demonstrate that substantial computational acceleration is possible using even
a simple uniform refinement (non-adaptive) approach.

The second verification set (Section §6.3) evaluates the adaptive shape control system.
The two examples in this section demonstrate correct discovery of the parameters necessary
to solve the optimization problem. In the process, we also evaluate the di↵erent indicators
developed in Section §5.1 and assess the performance of the search procedure developed
in Section §5.2. For both of these problems, the correct answer is known a priori, but the
system is initially given shape control that is insu�cient to solve the problem.

6.1 Symmetric Transonic Airfoil Optimization

The purpose of this first example is to demonstrate that substantial design acceleration can
be achieved using progressive shape control. The test case involves drag minimization for
a symmetric airfoil under inviscid conditions. The problem was posed as part of the AIAA
Aerodynamic Design Optimization Discussion Group, where it has been investigated by
several other researchers.26–31 The starting airfoil is a modified NACA 0012 (henceforth
“N0012m”), where the trailing edge is made sharp.l The design Mach number is 0.85,
while the angle of attack is fixed at ↵ = 0�. Additionally, the final airfoil shape must
contain the original airfoil. This constraint is satisfied when y � yN0012m everywhere on
the upper surface, and inversely on the lower surface.

lVia modification of the x

4 coe�cient: y = ±0.6
�
0.2969

p
x � 0.1260x � 0.3516x

2 + 0.2843x

3 � 0.1036x

4

�
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6.1.1 Meshing and Flow Solution

Because the solution must be symmetric, the flow is solved only in the upper half of the
domain with a symmetry boundary condition at y = 0. The farfield boundaries are placed
96 chords away in each coordinate direction. The optimization process radically increased
the sensitivity of the flow to the farfield boundary distance. The initial N0012m, with its
relatively confined regions of supersonic flow, is quite lenient with respect to the farfield
boundary location.m An initial domain size study indicated that a farfield distance of 24
chords was su�cient to resolve drag to within 2 counts of the value obtained using 96-chord
distances. However, the final design’s carefully tuned shock structure (see Figure 14a)
could not be reliably resolved with farfields nearer than about 96 chords.

6.1.2 Shape Parameterization
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Figure 13: Symmetric Airfoil: Initial parameteri-
zation with 7 design variables, generated by twice uni-
formly refining a 1-DV parameterization (lower half
generated by symmetry)

The airfoil is parameterized using the
RBF-based direct manipulation tech-
nique described in Section §2.1. Ini-
tially a single pilot point is placed on
the top surface, as shown in Figure 13
(black dot). Recall that each parame-
ter enacts a roughly bump-shaped de-
formation centered on the pilot point.
Having observed that it is generally
more e�cient to start with several design variables rather than a truly minimal set, two
uniform refinements are performed before commencement of optimization, yielding seven
initial design variables. The shape control is clustered towards the leading edge by trans-
forming the arc-length parametric space.n During shape control refinement, new pilot
points are placed at the midpoints between existing ones. The midpoint is also measured
in the transformed space, so that in physical space, new parameters are biased towards
the leading edge.

To handle the containment constraint, we set the lower bound of each shape parameter
to the corresponding local thickness of the N0012m. The direct manipulation approach
guarantees that the airfoil will exactly interpolate these pilot points. Regions between the
shape control parameters may temporarily violate the containment constraint, but these
violations get squeezed out as more parameters are added. Consistent with the progressive
shape control paradigm, the containment constraint similarly becomes more precise as the
search space is refined.

6.1.3 Optimization Results

Figure 14a shows the final optimized airfoil and its pressure profile. Notably, the leading
edge has become extremely blunt. In fact, after every parameter refinement, the nose
became blunter – apparently limited only by the first shape parameter’s proximity to the
leading edge. In fact, this is the expected optimal result for this problem.27 The final

mThe farfield boundary state is enforced weakly via 1-D Riemann invariants without circulation correc-
tion.

nTransformation function is s

⇤ = s � 0.15sin(2⇡s).
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Table 1: Symmetric Airfoil: Drag reduction with optimization. Drag given in counts (CD ·104)

Baseline 7-DV 15-DV 31-DV

CD 471.3 273.8 133.0 41.3
Error est. ±0.1 ±0.1 ±0.1 ±0.35

Cells 26 K 49 K 50 K 61 K

design also satisfies the containment constraint over the entire surface of the airfoil (not
just at the interpolation points).

Figure 14b shows the convergence of the objective function over 60 search directions,
and over 3 parameterization levels. The parameterization was automatically refined (i.e.
with no user intervention) when the objective slope tapered to 20% of its maximum slope.
After each transition, a new optimization is started; no transfer of Hessian information
from the previous design space is attempted. The final parameterization has 31 design
variables. The drag was reduced by a factor of 10, from the baseline 471 counts down to
41.3 counts. An additional refinement to 63 DVs proved unable to further improve the
design. The final design is probably close to optimal, as demonstrated by the diminish-
ing return on each additional parameter refinement visible in Figure 14b. Some further
improvement is likely possible, but even the small amount of remaining discretization
error combined with the very high-dimensional design space makes further improvement
extremely di�cult.

Figure 15 compares the initial and final meshes, which were automatically adapted to
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Figure 14: Symmetric Airfoil: Progressive parameterization optimization results
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Baseline Final

Mach

0.85 1 1.15

Figure 15: Symmetric Airfoil: Comparison of baseline and final meshes. The mesh refines
the regions most important for computing drag, primarily focusing on the leading edge expansion
and shock. To achieve the same error tolerance for both designs, the baseline mesh required only
26K cells (upper half only), while the final design required 61K cells.

reduce error in drag. Intermediate designs generated radically di↵erent mesh refinement
patterns. The refinement patterns reflect movement of the shock and changes in the width
of the supersonic region. For the final design, the adjoint-based mesh adaptation process
provided an estimate of the remaining error in drag of about 0.3 counts (< 3 ·10�5 in CD).
The output-based mesh adaptation performed a mesh refinement study at each design iter-
ation, yielding tight error bounds that were roughly constant throughout the optimization
(see Table 1), giving high credibility to the final design. The cell count required to meet
the error tolerance gradually increased throughout optimization. This indicates that the
optimization drove the design to become more sensitive to the mesh discretization. This
is not surprising since the final design has a much larger zone of dependence and weaker
shocks which make the e↵ects of numerical dissipation more noticeable.

6.1.4 Static vs. Progressive Search Spaces

It is worth pausing to evaluate computational performance. The main observation is that
the progressive parameterization approach strongly outperforms any fixed search space.
To give a rough sense of performance, Figure 16 plots design improvement versus wall-
clock time for solving this case with various parameterizations on four cores of a laptopo.
Both the uniform refinement scheme (labeled “progressive”) and the adaptive approach
(which resulted in fewer design variables) achieved faster and deeper overall design im-
provement than any static parameterization, regardless of its resolution. As expected, low-
dimensional search spaces support limited design improvement, while high-dimensional
spaces take much longer to navigate. On the finest (63-DV) static parameterization,
which stalled quite early, the optimizer may simply be unable to navigate the design space,

o2013 MacBook Pro with a 2.6GHz Intel Core i7 and 16GB of memory.
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Figure 16: Symmetric Airfoil: Cost-e↵ectiveness
of each parameterization scheme, showing design im-
provement vs. wall-clock time. ⇥-marks indicate
search space refinements on the progressive and adap-
tive methods. All cases used identical settings for
meshing, solving, error control and (where relevant)
triggering.

as also reported by Carrier et al. on
this problem.27 Starting in a coarse
design space appears to smooth the
navigation early on, leading to a more
robust search process, an observation
we examine in more detail in a later
example (Section §7.1).

6.1.5 Uniform vs. Adaptive Re-
finement

The adaptive refinement approach
(which results in fewer design vari-
ables) performed slightly faster than
uniform refinement throughout most
of the optimization. This speedup is
largely due to the smaller number of
shape derivative calls to the geometry
modeler and gradient projections, and
also partly due to the somewhat lower
dimensional design space. For slow ge-
ometry modelers, this advantage could
be even more significant. However,
other factors such as the trigger (Sec-
tion §4.3), rate of variable introduc-
tion (Section §5.3), choice of impor-
tance indicator (Section §5.1), design
variable scaling, and the fundamental
path-dependence of optimization each
have a major impact on the e�ciency.
It is di�cult to draw firm conclusions about the potential computational advantage of
adaptive refinement vs. uniform refinement from such a cursory study. In the following
examples, we investigate the adaptive approach in more detail.

6.2 Subsonic Wing Twist Optimization

Next we consider a wing twist optimization problem, where the airfoil section and planform
remain unmodified. The objective is to minimize (induced) drag at fixed lift (CL = 0.375)
at a flight Mach number of 0.5.

6.2.1 Shape Parameterization

The baseline geometry is a straight, unswept, untwisted wing, generated by extruding the
N0012m section three chord lengths and capping the tip by a simple revolution. For this
problem we use a deformer that interpolates twist between arbitrary spanwise stations.
The twist is in the streamwise plane about the trailing edge and is linearly interpolated
between successive stations. Control stations can be arbitrarily spaced along the span, but
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for this problem we maintain strict regularity by refining only at the midpoints between
consecutive stations. We allow the global angle of attack to vary and therefore hold the
twist fixed at the wing root. The first parameterization (“P0”) has two twist stations,
located at the tip and mid-span. To generate the second level (“P1”), new twist stations
are added at the midpoints between existing ones.

6.2.2 Mesh and Error Control

The baseline design has about 76.7 counts of drag. Unlike the previous example, where
the objective was reduced by a factor of ten, here the possible improvements are very
small, which places high demands on the accuracy of the flow solution.32 Assuming the
span e�ciency factor e cannot exceed 1.0, as non-planar deformations are minimal with
the twist applied about the trailing edge, the minimum possible drag is roughly

CDmin =
C2

L

⇡e
0

ÆR
=

0.3752

6.0⇡
= 74.6 counts (13)

However, as the wing is untapered, and twist is about the trailing edge, we do not expect
that the optimal design will recover a precisely elliptical lift distribution. Additionally,
careful inspection of the flow reveals a small shock on the wing tip near the trailing edge,
where the flow accelerates around the tip to the top surface. Losses associated with this
shock further erode the potential for drag reduction.

We compute adjoint solutions for the drag and lift functionals to compute their gra-
dients, allowing the nonlinear lift constraint to be treated exactly by SNOPT. The error
control scheduling was set to coincide with the parameterization refinements, and the
farfield boundaries were placed at 48 chords away. In the first search space, the resulting
adapted meshes contained about 5 million cells, while for the second search space, the
meshes contained roughly 10-15 million cells to meet the tighter error tolerance.

6.2.3 Optimization Results

Figure 17 shows the main results of the optimization. The lift distribution rapidly ap-
proaches an elliptical shape, with only very small discrepancies at the tip, due to the
untapered section, and at the root, which compensates to exactly match lift. Figure 18
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shows the convergence of the lift and drag functionals. Because a coarser mesh was used in
the initial design space, there is a jump in functional values when transitioning to the finer
design space. By the end, lift is satisfied and drag is reduced. To accurately determine the
total improvement, we performed mesh refinement studies on the initial and final designs.
Figure 19 shows the convergence of span e�ciency factor (e) with mesh refinement for
the initial and final designs, trimmed to CL = 0.3750. The initial design had CD = 76.7
counts of drag (e = 0.973 ± 0.005). By the final design this was improved to CD = 75.6
counts (e = 0.987 ± 0.003).
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(a) Baseline design
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(b) Final design

Figure 19: Twist optimization: Convergence of span e�ciency factor with mesh refinement
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Table 2: Twist optimization results.

Chords from Root 0.0 0.6 1.2 1.8 2.4 2.7 2.85 2.97 3.0

Twist (o) 4.2 4.8 4.5 4.1 3.5 3.2 3.0 2.9 2.9
Sectional Lift (2cl/b) 0.156 0.156 0.146 0.126 0.094 0.069 0.050 0.030 0.0

6.3 Shape Matching

This verification problem involves geometric shape-matching of a typical transport wing.
In shape matching, we examine the convergence from a baseline geometry to an attainable
target shape. The objective function aims to minimize the geometric deviation between
the current shape and the target shape S⇤ in a least-squares sense:

J ⌘ kS� S⇤k2 =
NvertsX

i=1

kvi � v⇤
i k2 (14)

where vi are the current vertex coordinates on the discrete surface and v⇤
i are the corre-

sponding target vertex coordinates. This is a problem with a known solution in two senses.
We know not only the optimal shape, but also the minimal shape parameterization that
can achieve that design. The overall goal of is to e�ciently discover a parameterization
that enables the optimizer to exactly match the target shape.

The purpose of this verification example is to test the specifically adaptive shape
control system developed in Section §5. The validation is split into four subsections, each
addressed to answering a specific question:

1. (Section §6.3.2) Are the indicator values correlated with actual design improvement?

2. (Section §6.3.3) Can the system discover the parameters necessary for solution?

3. (Section §6.3.4) How can the e�ciency of the search strategy be improved?

4. (Section §6.3.5) Are there any situations where the strategy might fail?

6.3.1 Initial Parameterization and Target

Figure 20 shows the the baseline and target shapes. The baseline is a straight wing with no
twist, taper or sweep, represented as a discrete geometry with about 197,000 vertices. The
target geometry is a wing with the same airfoil section, but substantial twist, chord-length
and sweep profiles, as shown in Figure 20. For this academic example, the target sweep
profile is linear and the target chord-length profile is piecewise linear in two segments,
while the twist profile is quadratic.

The wing planform deformation is parameterized using the technique described in Sec-
tion §2.2, which linearly interpolates twist, sweep and chord between spanwise stations,
while exactly preserving airfoil cross-sections. The initial parameterization has three de-
sign variables: twist, chord and sweep at the tip station (marked “L0”), while the root
is fixed. To refine the shape control, more spanwise stations are added (e.g. “L1”, “L2”,
etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen
at di↵erent stations, allowing for anisotropically refined shape control.
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Figure 20: Shape Matching: Baseline and target planform profiles. Initial shape control station
is labeled L0, after which L1 is added, followed by the L2 stations, etc.

The target shape is unattainable under this initial parameterization. Only through
su�cient and correct search space refinement can the target be reached. The problem is
constructed such that we know in advance the necessary and su�cient refinement pattern,
i.e. the one that will allow the closest recovery of the target with the fewest design variables.
Namely, chord control at the break is required to recover the piecewise linear chord profile.
Next, progessively finer twist control should be added to approximate the quadratic twist
profile with piecewise linear segments. The intial sweep controller at the tip is su�cient to
recover the linear sweep distribution, so no additional sweep control should be added. We
now test the degree to which the adaptive system can recover or approximate this “ideal”
parameterization.

6.3.2 Indicator Verification

We first compare the performance of these three indicators. We start with a baseline
3-DV shape parameterization, under which the shape has been optimized to convergence,
as shown by the blue curve in Figure 21. All design improvement possible under the
initial parameterization has been attained, but further improvement is possible when more
degrees of freedom are added. The goal of this example is to evaluate the ability of the
indicators (Equations (5) to (7)) to predict the actual performance of the various candidate
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shape parameters.
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Figure 21: Shape Matching: Indicator verifi-
cation: P1: Objective convergence under initial
parameterization. P2 and P3: Subsequent opti-
mizations corresponding to addition of one of the
candidates, starting from the previous best design.

For this evaluation, the geometry
modeler generated 21 candidate shape
control refinements from the baseline pa-
rameterization. For each candidate, We
ran a separate optimization, where we
added only that one shape parameter to
the active set. (In practice, the sys-
tem will add several parameters at once;
adding one at a time simplifies this verifi-
cation study.) Figure 21 shows the objec-
tive convergence corresponding to each
candidate parameter. The goal in adap-
tive refinement is to pick the parame-
ters that enable the objective to converge
to the lowest final value, thus maximiz-
ing �Jactual. Next, for each candidate
the system predicts the potential design
improvement using Equations (5) to (7),
which we then correlate with the actual
design improvements. We repeated this
study once more, by invoking a second
refinement and evaluating 44 more can-
didate shape parameters.

Figure 22 shows the correlation between the predicted design improvement and the
actual observed design improvement for each of the candidates. The left side corresponds
to the 21 candidates tested in the first refinement, while the right side is for the subsequent
44 candidates considered in the second refinement. In each plot, the parameters at the top
right are the most e↵ective ones. The automated system would choose to add only the N
rightmost parameters, while ignoring the ine↵ective parameters at the left. Exactly how
many parameters to add will depend on the refinement strategy. The top frames in Fig-
ure 22, corresponding to a full Hessian approximation (Equation (5)), demonstrate nearly
perfect performance predictions for every candidate. The middle frames show that if the
Hessian is assumed to be the identity matrix (Equation (6)), the correlation is extremely
poor, especially during the second refinement, where the highest-ranked parameters in fact
perform the worst, and vice versa. As we discuss in Section §6.3, this happens because of
poor scaling among the design parameters, which the Hessian naturally accounts for.

Previous studies have suggested using adjoint-derived gradient information to deter-
mine the relative importance of di↵erent candidate parameters.2,4 This study demon-
strates that unless the problem is well-scaled, examining only first-order information can
lead to very poor predictions. As a possible remedy, consider the bottom frames, where
only the diagonal of the Hessian is used. In this case the correlation is quite reasonable.
Although the diagonal of the Hessian is not readily available for aerodynamic problems,
this nevertheless shows that some form of simple diagonal scaling may be su�cient to
achieve good predictions of importance for adaptive shape control refinement.
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Figure 22: Shape Matching: Indicator verification: Correlation between predicted and actual
design improvement for the first (left) and second (right) refinements. Top row : Full Hessian
approximation. Middle row : Assuming the Hessian is the identity matrix. Bottom row : Using
only the diagonal of the Hessian.

6.3.3 Test 1: Indicator Comparison and Automatic Parameter Discovery

The first goal is to investigate the indicator’s ability to accurately guide the search space
construction and to discover the necessary parameters. In this exercise we sequentially
add one new design parameter at a time, followed by a brief optimization. we then
compare the predictive power of the two e↵ectiveness indicators, one based on gradients,
IG (Equation (6)) and one using full Hessian information, IH (Equation (5)), which is
accurately computable for this analytic objective.p

Figure 23 shows the resulting adaptation patterns that evolved. The right frame shows
the pattern produced by the Hessian indicator after 22 adaptation cycles. Sweep control
is correctly ignored. Chord control was correctly added at the break (13

32

span). Four extra
chord variables were added, but this was not a mistake. Under the binary refinement rules
we used, the necessary station at 13

32

span was not considered a candidate until the stations
at 1

2

, 1

4

, 3

8

, and 7

16

span were all first added. The adaptation procedure did precisely this,
and correctly identified the necessary parameter once the adaptation was deep enough.
Examining the twist profile, the system correctly added evenly spaced stations along the
span, optimally clamping down the error between the quadratic profile and the linear

pThe Hessian is accurate but not exact, because the twist deformation modes are nonlinear with respect
to the angle. The error due to this e↵ect is small, but it explains some slightly imperfect predictions.
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Figure 23: Shape Matching: Test 1: Performance of the gradient indicator IG vs. the Hessian
indicator IH . Top: IH recovers the expected parameters with few extras, while IG mostly adds
extraneous parameters. Bottom: Refinement patterns and optimized planform distributions with
IG (left) and IH (right).

segments. It has also begun to add the next nested level of control near the root.
Now compare the left half of Figure 23, which shows the results using the gradient-only

indicator IG after 25 adaptation cycles. Qualitatively, the shape matching is reasonable,
but the refinement pattern reveals that the procedure was quite inaccurate and failed to
e�ciently capture the important design variables, resulting in a somewhat inferior match,
especially in the twist profile.

The reason for the relatively poor performance of IG is that the chord and sweep
objective gradients had much larger magnitudes than the twist gradients, even when very
close to their optimal values. Thus chord and sweep were favored, even though they o↵ered
only extremely short-term potential. This is a concrete example of the idea illustrated
notionally by the red and blue curves in Figure 10. IH , by constrast, was intrinsically
sensitive to the high second derivative of the objective with respect to the chord and sweep
parameters, revealing that they in fact had low long-term potential. While computing IH
for aerodynamic functionals is not currently feasible, this study highlights the essential
role of second derivative scaling information when predicting relative performance.

Figure 24 compares the objective convergence of the two indicators (labeled “IG (add
1)” and “IH (add 1)”). The gradient indicator frequently adds parameters with limited
potential, leading it to stall for several adaptation cycles. Nevertheless, it still reduced
the objective by over 6 orders of magnitude, indicating quite close recovery of the target
shape. The Hessian indicator, however, achieves good progress at every cycle and reaches
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a superior design.
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Figure 24: Shape Matching: Objective convergence for
di↵erent indicators and search strategies. Solid blue line
shows the “best possible” convergence, using the a priori
known best possible 35-DV parameterization. Each color
represents a di↵erent adaptively-refined parameterization
and ⇥-marks denote search space refinements.

Compared to the “ideal” pa-
rameterization, shown in Fig-
ure 24, performance is still rela-
tively slow. It took many adap-
tation cycles to drive towards the
target shape, because we deliber-
ately permitted only one param-
eter to be added at a time and
because the system searched only
one level deep in the parameter
tree. As mentioned in Section
§5.3, higher growth rates should
lead to much faster design im-
provement.

6.3.4 Test 2: Search Proce-
dure Evaluation

As a second test, we then tried
searching deeper for candidates
(two levels deep), and specify a
faster growth rate (adding three parameters per refinement). For this test, we no longer
exhaustively evaluated all combinations, as this becomes prohibitive. Instead, we used
the constructive search procedure (Function 3) to seek a good, if not perfect, ensemble of
shape parameters, by evaluating a small number of candidates. After several alternating
optimizations and refinements, the process converged to nearly perfect matching, as shown
in Figure 25. Figure 24 shows that the convergence rate for this strategy (labeled “IH
(add 3)”) is much faster, approaching the performance of the ideal parameterization. Al-
though there are now a few more unnecessary parameters than before, the shape recovery
is excellent. To achieve this close of a match using uniform refinement of the shape con-
trol would have required 48 shape parameters. By using adaptive shape control, despite
adding some extraneous parameters, the system has accurately matched the shape using
only 30 parameters.

6.3.5 Test 3: Immediate Discovery

As a final experiment, the system attempts to predict all of the necessary shape control,
based only on information at the baseline design. In other words, there will be no in-
termediate optimizations. We allow the system to immediately look five levels deep, and
request the addition of 32 design variables at once, without any prior optimization. There
are a total of 93 candidates, equivalent to all the parameters that would be added under
uniform refinement. An exhaustive search would involve evaluating all ⇠ 8 · 1024 possible
combinations of the parameters, making an e�cient search procedure mandatory.

Figure 26 shows the initial priority queue for the 96 candidates, which is formed by
analyzing each candidate shape control element independently, using the Hessian indicator.
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The y-axis gives the expected improvement, relative to the baseline parameterization,
that can be achieved by adding the corresponding parameter. The ideal shape control
ensemble of 32 parameters is highlighted in green. The first pass over the candidates
correctly identified the chord station at the break as the most important shape controller
to add. Initially, it appears that the twist variables are the least important in the queue.
With the addition of the chord parameter, however, the next 50 elements in the queue all
become highly ine↵ective. Their initial appraisal was based on the absence of the added
parameter; they could each have recovered much of the same design potential that it
o↵ered. The twist stations at the end of the priority queue o↵er relatively little potential,
but that potential is independent of the chord control, and thus they remain useful.

The constructive search procedure remains functional on this problem, but it adds
many extraneous variables. Function 3 must work its way through all of the other chord
and sweep variables, one window w at a time, until finally discovering the more important
twist control. Studies are underway to determine whether a modification of the con-
structive approach can perform well on this relatively rare type of problem, or whether
alternate strategies, such as a form of genetic algorithm, or specialized random search
would perform better. From a practical standpoint, however, the easiest approach is to
limit the depth of the search to 1-2 levels deeper than the current parameterization, which
eliminates most of the redundancy and yields excellent performance.

7 Design Examples

This section demonstrates the usefulness of adaptive parameterization on two aerodynamic
design examples. The first example involves multipoint design of a transonic airfoil. The
second example involves design of a transonic transport wing.

7.1 Multipoint Transonic Airfoil Design with Constraints
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Figure 27: Transonic Airfoil: Baseline ge-
ometry, showing first three levels of uniformly re-
fined shape control (2-DV, 6-DV and 14-DV)

In this example, we consider multipoint
transonic airfoil design subject to numer-
ous constraints on both geometry and aero-
dynamic performance. The purpose is to
demonstrate adaptive shape control on a
more challenging 2D problem. This exam-
ple shows that using variable shape control
leads to a smoother design trajectory and
accelerates the optimization.

The baseline geometry is a unit-chord RAE 2822 airfoil, shown in Figure 27. The
objective is to minimize an equally-weighted sum of drag at two flight conditions, Mach
0.79 and 0.82. Lift-matching and minimum pitching moment constraints are imposed at
both design points. Because the solver is inviscid, we constrained the camber line angle
� at the trailing edge (see Figure 28) to prevent excessive cambering that would result
in poor viscous performance. A minimum and maximum geometric closing angle � at
the trailing edge were also specified. Finally we required that the thickness be preserved
at least 90% of its initial value everywhere (enforced at 20 chordwise locations ti), and
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that the total cross-sectional area A maintain its initial value. The complete optimization
statement is

minimize
X

CD
1

+ CD
2

subject to CL
1

= CL
2

= 0.75

(V) CM
1

� �0.18

(V) CM
2

� �0.25

9�  �  13�

(V) �  6�

A � ARAE ⇡ 0.07787

ti � 0.9tRAEi 8i

!12

� �

Figure 28: Geometric constraints at the trailing
edge

where (V) denotes constraints that are initially violated. Gradients for the six aerody-
namic functionals are computed using adjoint solutions. The 23 geometric constraints are
computed on the discrete surface, with gradients derived analytically. The angle of attack
at each design point is variable.

7.1.1 Shape Parameterization

The airfoil is parameterized using the RBF-based direct manipulation technique described
in Section §2.1 and used in Section §6.1. Figure 27 shows the design variable locations for
the first few shape control levels. We consider several static shape parameterizations (with
6, 14, 30 and 62 shape design variables) and compare their performance to two progressive
shape control strategies starting from two design variables: (1) nested uniform refinement
and (2) adaptive refinement. A maximum tree depth equivalent to the 62-DV parameteri-
zation is used, so that the two progressive approaches can, if necessary, ultimately recover
the 62-DV search space, while preventing the shape control from becoming unreasonably
closely spaced.

7.1.2 Adaptive Strategy

The trigger for the progressive and adaptive approaches was based on slope reduction,
with a reduction factor of r = 0.01. A large window of w = 6 was used for the first 3
levels, while the constraints were being driven to satisfaction. In the presence of violated
constraints, SNOPT’s merit function undergoes large fluctuations, which can cause early
slope-based triggering. After constraint satisfaction, the window was reduced to w = 2
for e�ciency. For the adaptive approach, the target growth rateq was set to 1.75⇥ and
the constructive search algorithm (Function 3) was used, with w = 3. As there are
many constraints in this problem, we used the first-order KKT-based indicator IKKTG

(Equation (12)) to rank candidate refinements. Hessian information would be useful here,
but there is not currently an a↵ordable way to compute aerodynamic functional Hessians
for each candidate refinement.

qActual growth rates are also a↵ected by regularity rules.
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Figure 29: Transonic Airfoil: Optimization results for the adaptive parameterization ap-
proach. Top: Optimized airfoil to scale. Middle: Final airfoil from three intermediate search
spaces (4-DV, 15-DV, 26-DV), showing 26-DV adapted parameterization. Bottom: Corresponding
pressure profiles for the Mach 0.79 design point.

7.1.3 Optimization Results

!11

Figure 30: Transonic Airfoil: History of adaptive
refinement, showing best airfoils attained under the
first several parameterizations.

Figure 29 shows the airfoil shape
achieved by three of the stages dur-
ing the adaptive approach (4-DV, 15-
DV, 26-DV). Examining the Mach
0.79 pressure profile, the loading is
shifted forward. The reflex camber at
the trailing edge is made more shallow
to satisfy the camberline angle con-
straint. The main shock is moved for-
ward and weakened. A small shock
temporarily appears on the lower sur-
face while meeting the constraints, but
is then eliminated by the final design.
Overall the drag at this design point is
reduced from over 300 counts to 66 counts. Similarly, at Mach 0.82, the drag is reduced
from about 600 counts to 276 counts. Figure 29 also shows the non-uniformly refined
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Figure 31: Transonic Airfoil: Convergence of aerodynamic functionals across all adaptively
refined parameterization levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint
values shown in dashed lines.

final parameterization, which is the result of adding design variables over five levels. The
sequence of the first few adapted parameterizations is shown in Figure 30.

Figure 31 shows the evolution of the lift, drag and pitching moment functionals. The
constraints are rapidly met and held throughout the optimization, while the drag is gradu-
ally reduced. The thickness constraints are satisfied at every design. The area and trailing
edge constraints are all active but satisfied by the end. At each re-parameterization, the
quasi-Newton optimizer performs a “cold restart”, which resets the Hessian approxima-
tion to the identity matrix. The main consequence is that the lift constraints are violated
for the first few search directions immediately after refining, before snapping back to the
target values. The design is still slowly improving. The fact that substantial gains were
made even on the final parameterization indicates that the continuous limit of design
improvement has not yet been reached.

7.1.4 Comparison to Static Parameterizations

The left frame of Figure 32 compares the convergence of the drag objective for the various
parameterizations. Initially, there is a somewhat convoluted startup period of 10-20 search
directions, where the initially violated constraints were being driven to satisfaction at the
expense of drag. Afterwards, the progressive and adaptive approaches strongly outperform
any of the static parameterizations, achieving more consistent progress, converging far
faster, and ultimately reaching equivalently good or superior designs. This is a clear
confirmation of the predicted behavior, described and illustrated notionally in Figure 1 as
following the “inside track” of the static parameterizations.
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Figure 32: Transonic Airfoil: Convergence of combined drag value (CD1 + CD2) (ignoring
satisfaction of constraints) for each parameterization method. ⇥-marks denote search space re-
finements.

Early in design, some of the static design spaces initially outperform the extremely
coarse (2-, 4- and 6-DV) progressive and adaptive search spaces. This indicates that the
choice to start with a minimal 2-DV design space was not ideal. Practically speaking, it
is more e�cient to start with several variables. Nevertheless, by the end, the progressive
approaches have still solidly outperformed the static parameterizations, which tend to stall
well before reaching their theoretical potential,r most likely because of the relative lack of
smoothness in their design trajectories.

The computational savings are more stark in the right frame of Figure 32, which
shows objective improvement vs. an estimate of wall-clock times. The progressive and
adaptive approaches reach the same objective value as the 63-DV parameterization in
one-third of the time. Each design iteration included an adjoint-driven mesh adaptation
to control discretization error,24,33 a flow solution for each design point, and six adjoint
solutions on the final adapted mesh to compute gradients for the aerodynamic functionals.
Notably, Figure 32 includes the cost of long line searches, visible especially in the 62-DV
parameterization. It also includes the usually neglected O(NDV ) computational time due
to computation of shape derivatives @S

@X by the geometry modeler, followed by gradient

rWe performed cold restarts when the static parameterizations stalled, to verify that no further progress
could be made.

sRough timings on 24 Intel Haswell cores
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Figure 33: Transonic Airfoil: Shapes encountered during optimization under a progressive
parameterization (right) are consistently much smoother than airfoils encountered under a static
parameterization (left).

projections to compute @J
@X and @Cj

@X . Adaptive refinement controls these costs by reducing
the number of design variables. By adjusting the progressive and adaptive strategies, even
more speedup is certainly possible. For example, the relatively delayed trigger could be
tightened, as it resulted in several extended periods of little design improvement.

As a final note for this problem, Figure 33 shows several representative airfoils encoun-
tered during optimization. We observe that with a progressive or adaptive approach, the
entire design trajectory involves smoother, more reasonable airfoils. This is a desirable
characteristic from a robustness standpoint, and also because it makes it possible to stop
at any point during optimization and have a reasonable design.

7.2 Transonic Transport Wing Design
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Figure 34: Transonic Wing: First two
shape control levels (8-DV and 26-DV)

In this example we consider the optimization of
a transport wing Mach 0.85. The objective is to
reduce drag subject to constraints on both lift
and pitching moment.t The baseline geometry
violates the pitching moment constraint. The
wing geometry is that of the Common Research
Model (CRM), scaled so that the mean aerody-
namic chord has unit length. The planform is
fixed, while variation in the vertical direction is
permitted, including airfoil design and sectional
twist. The twist is about the trailing edge and
is fixed at the root, while the angle of attack
is permitted to vary. The wing is required to
maintain its initial volume V

0

and also to main-
tain at least 25% of its original local thickness
t
0

everywhere. To approximate this continuous
thickness constraint, we used a 10 ⇥ 10 grid of
constraints distributed evenly across the plan-

tMeasured about the point (1.2077, 0, 0.007669) with the origin at the leading edge of the wing root.
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form. The full optimization problem is

minimize
X

CD

subject to CL = 0.5

(V) CM � �0.17

V � V
0

⇡ 0.26291

ti � 0.25ti
0

8i

7.2.1 Shape Parameterization

For this problem, we use the wing deformer described in Section §2.2, and previously used
in Section §6.3. Both twist and airfoil section deformations are interpolated independently,
while the planform definition is fixed. At each station a curve deformer (identical to the
setup used for the previous two airfoil design examples) deforms the airfoil shape, after
which the twist is applied. As before, the twist is in the streamwise plane about the trailing
edge and is linearly interpolated. Control over airfoil sections and twist can happen at
di↵erent stations, allowing for “anisotropic” shape control. For example, the twist control
may have a higher spanwise resolution than the airfoil control. Similarly, each airfoil
control station can o↵er di↵erent resolution for shape control.

Figure 34 shows the first two parameterizations (“P0” and “P1”). P0 allows twist at
the tip and break (fixed at the root) and rough camber and thickness control (two control
points each on the root, break and tip sections). There are initially eight shape design
variables, plus the angle of attack. To refine the parameterization, new control stations
are added at the spanwise midpoints between the existing stations, and simultaneously
uniformly refine the airfoil control at each existing station. Two additional parameteri-
zation levels (“P1” and “P2”) are automatically generated when needed, with 26 and 70
geometric design variables, respectively.

7.2.2 Optimization Results
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Figure 35: Transonic Wing: Convergence of
aerodynamic functionals (only plotted at success-
ful search directions)

Figure 35 shows the convergence of the
aerodynamic functionals over the three pa-
rameterization levels. Under “P0”, the ini-
tially violated pitching constraint is driven
to satisfaction. To do this, large air-
foil deformations are enacted, as shown
in Figure 36 (blue lines), with a resulting
sharp increase in drag. After adding more
shape control resolution, the drag is rapidly
driven down almost to the initial value,
while nearly satisfying the constraints. The
airfoil sections (Figure 36, orange lines) re-
lax to more subtle changes from the base-
line shape. The thickness and volume con-
straints are met at every design iteration.
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Figure 36: Transonic Wing: Airfoil cuts and inviscid solution pressure profiles.

All of the constraints are nearly satisfied by the end, with only a slight drag penalty
associated with having to meet the initially violated pitching moment constraint.

The flow mesh was automatically adapted for every design iteration, with about 12-18
million cells, depending on the design iteration, which was adequate to drive the optimiza-
tion forward. This example demonstrates the ability of the adaptive shape optimization
system to automatically solve a standard 3D aerodynamic optimization problem with
constraints. Importantly, after the initial problem setup, no user intervention or problem
modification was required for the remainder of the optimization.

The design improved substantially at each parameterization level, including in the
finest 71-DV search space. This suggests that, although the optimization may have con-
verged with respect to the existing shape parameters, it has not yet converged with respect
to the refinement of the shape control resolution. By monitoring the amount of design
improvement achieved under successive search spaces, the system is able to inform a de-
signer about convergence towards continuous optimality, information that is not typically
available under a static-parameterization approach.
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8 Summary and Conclusions

In a progressive shape control approach, the search space is enriched automatically as
the optimization evolves, eliminating a major time-consuming aspect of shape design, and
freeing the designer to focus on good problem specification. Recognizing that di↵erent
design problems may call for di↵erent shape control, and that for unfamiliar problems
this may be di�cult to predict, we developed an adaptive approach that aims to discover
the necessary shape control while concurrently optimizing the shape. Results indicate
that with progressive parameterization, the design trajectory is smoother, leading to more
robust design improvement and o↵ering the ability to stop at any point and have a rea-
sonable design. The work also indicated that the optimization often achieves faster design
improvement (as much as 3⇥ in some cases) over using all the design variables up front.
Additional important benefits of this approach include:

• Automation: By automating search space refinement, both user time and depen-
dence on designer expertise is greatly reduced.

• Completeness: The full design space can be explored more thoroughly. The search
is not restricted to the initial parameterization, and as refinement continues, the
design space approaches that of the continuous problem.

• Feedback: The refinement pattern of the parameterization conveys useful informa-
tion to a designer about the specific design problem being solved.

While the studies presented in this report use the discrete geometry modeler devel-
oped under this seedling initiative, the implementation is specifically architected to be
modeler agnostic – the approach can work with any geometry modeler that meets certain
requirements. While some development is required to prepare an existing modeler for
adaptive use, the computational acceleration and reduction in manual setup time for each
optimization strongly justifies this expenditure. With modest tailoring, the system could
also invoke di↵erent aerodynamic or multi-disciplinary design frameworks.

There are two main tunable aspects of the refinement pacing: the trigger sensitivity
and the growth rate in the number of parameters. We showed that these two settings
are important for e�ciency, and that careful strategies enable the adaptive approach to
solidly outperform the standard static approach. All told, the implementation added only
about 10 new parameters to tune the adaptation strategy. In the future, some of these
choices can certainly be robustly automated.

Investigations are still underway to examine whether any Hessian information (in a new
candidate search space) can be approximated for aerodynamic objectives. This has the
potential to further improve the selection of candidate parameters. For highly redundant
candidate pools, the search procedure might be accelerated by using information on the
orthogonality of the deformation modes, or perhaps alternate search procedures or ranking
strategies would be more e↵ective.

8.1 Future Work

Looking to the future, automated shape optimization is certain to play an ever-increasing
role in design. As the designer no longer needs to specify the exact deformation modes
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by which a surface is permitted to be modified, care must be taken to explicitly specify
(via constraints) how it may not be modified, to prevent the optimizer from taking ad-
vantage of weaknesses in the problem formulation. Many of these constraints, such as
non-self-intersection, smoothness, or limits on excessive curvature, can be codified. This
development would help regularize the optimization and likely lead to superior results.

A major open area for research is continuous adaptation of the shape parameter loca-
tion. In this work we discussed a purely discrete refinement strategy (akin to h-refinement
of flow meshes). A natural alternative would be to consider something similar to r -
refinement – where parameters are redistributed, and placed at regions where the objective
is most sensitive to shape modification. Other major areas of future work include using
the technique with constructive solid modelers, or modelers with fixed parameter pools.
Finally, nothing is unique about the aerodynamic objectives pursued within this e↵ort,
and the approach can be applied to structural, acoustic or other design disciplines. Clearly,
this approach o↵ers tremendous potential throughout the range of disciplines considered
in MDAO settings, and combined aero-structural optimization is a topic of immediate
interest.
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